Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Org Chem ; 82(19): 10201-10208, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28875699

ABSTRACT

A one-pot synthesis of thioesters directly from carboxylic acids, N,N'-diphenylthiourea, triethylamine, and primary alkyl halides is described. Microwave-assisted heating and a catalytic amount of 4-(dimethylamino)pyridine (DMAP) further improved the yields. Both aromatic and aliphatic carboxylic acids were converted to the corresponding thioesters, and many functional groups were compatible with this reaction. Several possible reaction intermediates were investigated, and the quaternary ammonium salts, derived from alkyl halides and tertiary amines, were the intermediates to yield thioesters. A new reaction mechanism for this thioesterification is proposed.

2.
Oncotarget ; 7(47): 76995-77009, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27769069

ABSTRACT

A series of triazole-based small molecules that mimic FTY720-mediated anticancer activity but minimize its immunosuppressive effect have been produced. SPS-7 is the most effective derivative displaying higher activity than FTY720 in anti-proliferation against human hormone-refractory prostate cancer (HRPC). It induced G1 arrest of cell cycle and subsequent apoptosis in thymidine block-mediated synchronization model. The data were supported by a decrease of cyclin D1 expression, a dramatic increase of p21 expression and an associated decrease in RB phosphorylation. c-Myc overexpression replenished protein levels of cyclin D1 indicating that c-Myc was responsible for cell cycle regulation. PI3K/Akt/mTOR signaling pathways through p70S6K- and 4EBP1-mediated translational regulation are critical to cell proliferation and survival. SPS-7 significantly inhibited this translational pathway. Overexpression of Myr-Akt (constitutively active Akt) completely abolished SPS-7-induced inhibitory effect on mTOR/p70S6K/4EBP1 signaling and c-Myc protein expression, suggesting that PI3K/Akt serves as a key upstream regulator. SPS-7 also demonstrated substantial anti-tumor efficacy in an in vivo xenograft study using PC-3 mouse model. Notably, FTY720 but not SPS-7 induced a significant immunosuppressive effect as evidenced by depletion of marginal zone B cells, down-regulation of sphingosine-1-phosphate receptors and a decrease in peripheral blood lymphocytes. In conclusion, the data suggest that SPS-7 is not an immunosuppressant while induces anticancer effect against HRPC through inhibition of Akt/mTOR/p70S6K pathwaysthat down-regulate protein levels of both c-Myc and cyclin D1, leading to G1 arrest of cell cycle and subsequent apoptosis. The data also indicate the potential of SPS-7 since PI3K/Akt signalingis responsive for the genomic alterations in prostate cancer.


Subject(s)
Antineoplastic Agents/administration & dosage , Prostatic Neoplasms, Castration-Resistant/drug therapy , Small Molecule Libraries/administration & dosage , Triazoles/administration & dosage , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Fingolimod Hydrochloride/administration & dosage , Fingolimod Hydrochloride/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , TOR Serine-Threonine Kinases/metabolism , Triazoles/chemistry , Triazoles/pharmacology , Xenograft Model Antitumor Assays
3.
J Phys Chem A ; 120(7): 1020-8, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26854356

ABSTRACT

Studies have been carried out to gain insight in to an overall excited-state proton transfer cycle for a series of N-tosyl derivatives of 2-(2'-aminophenyl)benzothiazole. The results indicate that followed by ultrafast (<150 fs) excited-state intramolecular proton transfer (ESIPT), the titled compounds undergo rotational isomerization along the C1-C1' bond. For the model compound 2-(2'-tosylaminophenyl)benzothiazole (PBT-NHTs) the subsequent cis-trans isomerization process in both triplet and ground states are probed by nanosecond transient absorption (TA) and two-step laser-induced fluorescence (TSLIF) spectroscopy. Both TA and TSLIF results indicate the existence of a long-lived trans-tautomer species in the ground state with a lifetime of few microseconds. The experimental results correlate well with the theoretical approach, which suggests that PBT-NHTs proton transfer tautomer generated in the excited state undergoes intramolecular C1-C1' rotation to ∼100° between benzothiazole and phenyl moieties in which the energetics for the S1 and T1 states are nearly identical. As a result, the intersystem crossing between S1 and T1 states serves as a fast deactivation pathway for the excited-state cis-tautomer to channel into both cis- and trans-tautomer in their respective T1 states, followed by the dominant T1-S0 radiationless deactivation to populate the trans-tautomer in the ground state. The trans-tautomer species in the S0 state proceeds with intermolecular double proton transfer to regenerate the cis-normal form. An overall proton-transfer cycle describing the amino-type ESIPT and the subsequent isomerization processes is thus depicted in detail.

4.
J Phys Chem Lett ; 6(8): 1477-86, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-26263155

ABSTRACT

A series of new amino (NH)-type hydrogen-bonding (H-bonding) compounds comprising 2-(2'-aminophenyl)benzothiazole and its extensive derivatives were designed and synthesized. Unlike in the hydroxyl (OH)-type H-bonding systems, one of the amino hydrogens can be replaced with electron-donating/withdrawing groups. This, together with a versatile capability for modifying the parent moiety, makes feasible the comprehensive spectroscopy and dynamics studies of amino-type excited-state intramolecular proton transfer (ESIPT), which was previously inaccessible in the hydroxyl-type ESIPT systems. Empirical correlations were observed among the hydrogen-bonding strength (the N-H bond distances and proton acidity), ESIPT kinetics, and thermodynamics, demonstrating a trend that the stronger N-H···N hydrogen bond leads to a faster ESIPT, as experimentally observed, and a more exergonic reaction thermodynamics. Accordingly, ESIPT reaction can be harnessed for the first time from a highly endergonic type (i.e., prohibition) toward equilibrium with a measurable ESIPT rate and then to the highly exergonic, ultrafast ESIPT reaction within the same series of amino-type intramolecular H-bond system.


Subject(s)
Amines/chemistry , Protons , Electrons , Hydrogen Bonding
SELECTION OF CITATIONS
SEARCH DETAIL