Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Biophys J ; 123(8): 1015-1029, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38486450

ABSTRACT

To survive, adapt, and develop, cells respond to external and internal stimuli by tightly regulating transcription. Transcriptional regulation involves the combinatorial binding of a repertoire of transcription factors to DNA, which often results in switch-like binary outputs akin to Boolean logic gates. Recent experimental studies have demonstrated that in eukaryotes, transcription factor binding to DNA often involves energy expenditure, thereby driving the system out of equilibrium. The governing principles of transcriptional logic operations out of equilibrium remain unexplored. Here, we employ a simple two-input, single-locus model of transcription that can accommodate both equilibrium and nonequilibrium mechanisms. Using this model, we find that nonequilibrium regimes can give rise to all the logic operations accessible in equilibrium. Strikingly, energy expenditure alters the regulatory function of the two transcription factors in a mutually exclusive manner. This allows for the emergence of new logic operations that are inaccessible in equilibrium. Overall, our results show that energy expenditure can expand the range of cellular decision-making without the need for more complex promoter architectures.


Subject(s)
Logic , Transcription Factors , Transcription Factors/metabolism , Promoter Regions, Genetic , DNA/genetics
2.
Nat Comput Sci ; 3(2): 126-127, 2023 Feb.
Article in English | MEDLINE | ID: mdl-38177629
3.
Phys Rev E ; 102(5-1): 052410, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33327198

ABSTRACT

Gene regulatory networks (GRNs) orchestrate the spatiotemporal levels of gene expression, thereby regulating various cellular functions ranging from embryonic development to tissue homeostasis. Some patterns called "motifs" recurrently appear in the GRNs. Owing to the prevalence of these motifs they have been subjected to much investigation, both in the context of understanding cellular decision making and engineering synthetic circuits. Mounting experimental evidence suggests that (1) the copy number of genes associated with these motifs varies, and (2) proteins produced from these genes bind to decoy binding sites on the genome as well as promoters driving the expression of other genes. Together, these two processes engender competition for protein resources within a cell. To unravel how competition for protein resources affects the dynamical properties of regulatory motifs, we propose a simple kinetic model that explicitly incorporates copy number variation (CNV) of genes and decoy binding of proteins. Using quasi-steady-state approximations, we theoretically investigate the transient and steady-state properties of three of the commonly found motifs: Autoregulation, toggle switch, and repressilator. While protein resource competition alters the timescales to reach the steady state for all these motifs, the dynamical properties of the toggle switch and repressilator are affected in multiple ways. For toggle switch, the basins of attraction of the known attractors are dramatically altered if one set of proteins binds to decoys more frequently than the other, an effect which gets suppressed as the copy number of the toggle switch is enhanced. For repressilators, protein sharing leads to an emergence of oscillation in regions of parameter space that were previously nonoscillatory. Intriguingly, both the amplitude and frequency of oscillation are altered in a nonlinear manner through the interplay of CNV and decoy binding. Overall, competition for protein resources within a cell provides an additional layer of regulation of gene regulatory motifs.


Subject(s)
Gene Regulatory Networks , Models, Genetic , Proteins/metabolism , DNA Copy Number Variations/genetics
4.
Elife ; 92020 08 18.
Article in English | MEDLINE | ID: mdl-32808926

ABSTRACT

Predicting gene expression from DNA sequence remains a major goal in the field of gene regulation. A challenge to this goal is the connectivity of the network, whose role in altering gene expression remains unclear. Here, we study a common autoregulatory network motif, the negative single-input module, to explore the regulatory properties inherited from the motif. Using stochastic simulations and a synthetic biology approach in E. coli, we find that the TF gene and its target genes have inherent asymmetry in regulation, even when their promoters are identical; the TF gene being more repressed than its targets. The magnitude of asymmetry depends on network features such as network size and TF-binding affinities. Intriguingly, asymmetry disappears when the growth rate is too fast or too slow and is most significant for typical growth conditions. These results highlight the importance of accounting for network architecture in quantitative models of gene expression.


Subject(s)
Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Genes, Bacterial
5.
Biophys J ; 118(7): 1769-1781, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32101716

ABSTRACT

The process of transcription initiation and elongation are primary points of control in the regulation of gene expression. Although biochemical studies have uncovered the mechanisms involved in controlling transcription at each step, how these mechanisms manifest in vivo at the level of individual genes is still unclear. Recent experimental advances have enabled single-cell measurements of RNA polymerase (RNAP) molecules engaged in the process of transcribing a gene of interest. In this article, we use Gillespie simulations to show that measurements of cell-to-cell variability of RNAP numbers and interpolymerase distances can reveal the prevailing mode of regulation of a given gene. Mechanisms of regulation at each step, from initiation to elongation dynamics, produce qualitatively distinct signatures, which can further be used to discern between them. Most intriguingly, depending on the initiation kinetics, stochastic elongation can either enhance or suppress cell-to-cell variability at the RNAP level. To demonstrate the value of this framework, we analyze RNAP number distribution data for ribosomal genes in Saccharomyces cerevisiae from three previously published studies and show that this approach provides crucial mechanistic insights into the transcriptional regulation of these genes.


Subject(s)
Escherichia coli , Transcription, Genetic , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation , Kinetics
6.
Phys Biol ; 16(6): 061001, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31603077

ABSTRACT

The genomic revolution has indubitably brought about a paradigm shift in the field of molecular biology, wherein we can sequence, write and re-write genomes. In spite of achieving such feats, we still lack a quantitative understanding of how cells integrate environmental and intra-cellular signals at the promoter and accordingly regulate the production of messenger RNAs. This current state of affairs is being redressed by recent experimental breakthroughs which enable the counting of RNA polymerase molecules (or the corresponding nascent RNAs) engaged in the process of transcribing a gene at the single-cell level. Theorists, in conjunction, have sought to unravel the grammar of transcriptional regulation by harnessing the various statistical properties of these measurements. In this review, we focus on the recent progress in developing falsifiable models of transcription that aim to connect the molecular mechanisms of transcription to single-cell polymerase measurements. We discuss studies where the application of such models to the experimental data have led to novel mechanistic insights into the process of transcriptional regulation. Such interplay between theory and experiments will likely contribute towards the exciting journey of unfurling the governing principles of transcriptional regulation ranging from bacteria to higher organisms.


Subject(s)
DNA-Directed RNA Polymerases/analysis , Gene Expression Regulation , Genomics/methods , Transcription, Genetic , Models, Genetic
7.
Phys Rev E ; 100(2-1): 022405, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31574672

ABSTRACT

How cells regulate the number of organelles is a fundamental question in cell biology. While decades of experimental work have uncovered four fundamental processes that regulate organelle biogenesis, namely, de novo synthesis, fission, fusion, and decay, a comprehensive understanding of how these processes together control organelle abundance remains elusive. Recent fluorescence microscopy experiments allow for the counting of organelles at the single-cell level. These measurements provide information about the cell-to-cell variability in organelle abundance in addition to the mean level. Motivated by such measurements, we build upon a recent study and analyze a general stochastic model of organelle biogenesis. We compute the exact analytical expressions for the probability distribution of organelle numbers, their mean, and variance across a population of single cells. It is shown that different mechanisms of organelle biogenesis lead to distinct signatures in the distribution of organelle numbers which allow us to discriminate between these various mechanisms. By comparing our theory against published data for peroxisome abundance measurements in yeast, we show that a widely believed model of peroxisome biogenesis that involves de novo synthesis, fission, and decay is inadequate in explaining the data. Also, our theory predicts bimodality in certain limits of the model. Overall, the framework developed here can be harnessed to gain mechanistic insights into the process of organelle biogenesis.


Subject(s)
Models, Biological , Organelles/metabolism , Organelle Size , Peroxisomes/metabolism
8.
Science ; 364(6440): 593-597, 2019 05 10.
Article in English | MEDLINE | ID: mdl-31000590

ABSTRACT

Eukaryotic genes are regulated by multivalent transcription factor complexes. Through cooperative self-assembly, these complexes perform nonlinear regulatory operations involved in cellular decision-making and signal processing. In this study, we apply this design principle to synthetic networks, testing whether engineered cooperative assemblies can program nonlinear gene circuit behavior in yeast. Using a model-guided approach, we show that specifying the strength and number of assembly subunits enables predictive tuning between linear and nonlinear regulatory responses for single- and multi-input circuits. We demonstrate that assemblies can be adjusted to control circuit dynamics. We harness this capability to engineer circuits that perform dynamic filtering, enabling frequency-dependent decoding in cell populations. Programmable cooperative assembly provides a versatile way to tune the nonlinearity of network connections, markedly expanding the engineerable behaviors available to synthetic circuits.


Subject(s)
Gene Expression Regulation, Fungal , Gene Regulatory Networks , Genes, Synthetic , Saccharomyces cerevisiae/genetics , Transcription Factors/metabolism , Synthetic Biology
9.
Biophys J ; 114(9): 2072-2082, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29742401

ABSTRACT

Transcription is the dominant point of control of gene expression. Biochemical studies have revealed key molecular components of transcription and their interactions, but the dynamics of transcription initiation in cells is still poorly understood. This state of affairs is being remedied with experiments that observe transcriptional dynamics in single cells using fluorescent reporters. Quantitative information about transcription initiation dynamics can also be extracted from experiments that use electron micrographs of RNA polymerases caught in the act of transcribing a gene (Miller spreads). Inspired by these data, we analyze a general stochastic model of transcription initiation and elongation and compute the distribution of transcription initiation times. We show that different mechanisms of initiation leave distinct signatures in the distribution of initiation times that can be compared to experiments. We analyze published data from micrographs of RNA polymerases transcribing ribosomal RNA genes in Escherichia coli and compare the observed distributions of interpolymerase distances with the predictions from previously hypothesized mechanisms for the regulation of these genes. Our analysis demonstrates the potential of measuring the distribution of time intervals between initiation events as a probe for dissecting mechanisms of transcription initiation in live cells.


Subject(s)
Gene Expression Regulation , Single-Cell Analysis , Transcription Initiation, Genetic , Escherichia coli/genetics , RNA, Bacterial/genetics , RNA, Ribosomal/genetics , Time Factors
10.
Phys Rev E ; 97(2-1): 022402, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29548128

ABSTRACT

Regulation of transcription is a vital process in cells, but mechanistic details of this regulation still remain elusive. The dominant approach to unravel the dynamics of transcriptional regulation is to first develop mathematical models of transcription and then experimentally test the predictions these models make for the distribution of mRNA and protein molecules at the individual cell level. However, these measurements are affected by a multitude of downstream processes which make it difficult to interpret the measurements. Recent experimental advancements allow for counting the nascent mRNA number of a gene as a function of time at the single-cell level. These measurements closely reflect the dynamics of transcription. In this paper, we consider a general mechanism of transcription with stochastic initiation and deterministic elongation and probe its impact on the temporal behavior of nascent RNA levels. Using techniques from queueing theory, we derive exact analytical expressions for the mean and variance of the nascent RNA distribution as functions of time. We apply these analytical results to obtain the mean and variance of nascent RNA distribution for specific models of transcription. These models of initiation exhibit qualitatively distinct transient behaviors for both the mean and variance which further allows us to discriminate between them. Stochastic simulations confirm these results. Overall the analytical results presented here provide the necessary tools to connect mechanisms of transcription initiation to single-cell measurements of nascent RNA.


Subject(s)
Models, Genetic , RNA/genetics , Transcription, Genetic , Kinetics , Poisson Distribution , Stochastic Processes
11.
PLoS Comput Biol ; 13(4): e1005491, 2017 04.
Article in English | MEDLINE | ID: mdl-28414750

ABSTRACT

Gene expression is intrinsically a stochastic (noisy) process with important implications for cellular functions. Deciphering the underlying mechanisms of gene expression noise remains one of the key challenges of regulatory biology. Theoretical models of transcription often incorporate the kinetics of how transcription factors (TFs) interact with a single promoter to impact gene expression noise. However, inside single cells multiple identical gene copies as well as additional binding sites can compete for a limiting pool of TFs. Here we develop a simple kinetic model of transcription, which explicitly incorporates this interplay between TF copy number and its binding sites. We show that TF sharing enhances noise in mRNA distribution across an isogenic population of cells. Moreover, when a single gene copy shares it's TFs with multiple competitor sites, the mRNA variance as a function of the mean remains unaltered by their presence. Hence, all the data for variance as a function of mean expression collapse onto a single master curve independent of the strength and number of competitor sites. However, this result does not hold true when the competition stems from multiple copies of the same gene. Therefore, although previous studies showed that the mean expression follows a universal master curve, our findings suggest that different scenarios of competition bear distinct signatures at the level of variance. Intriguingly, the introduction of competitor sites can transform a unimodal mRNA distribution into a multimodal distribution. These results demonstrate the impact of limited availability of TF resource on the regulation of noise in gene expression.


Subject(s)
Gene Expression Regulation/genetics , RNA, Messenger/genetics , Transcription Factors/genetics , Binding Sites , Computational Biology , Gene Dosage/genetics , Kinetics , Promoter Regions, Genetic/genetics , RNA, Messenger/analysis , RNA, Messenger/metabolism , Transcription Factors/metabolism
12.
Elife ; 62017 03 15.
Article in English | MEDLINE | ID: mdl-28296635

ABSTRACT

The complexity of gene regulatory networks that lead multipotent cells to acquire different cell fates makes a quantitative understanding of differentiation challenging. Using a statistical framework to analyze single-cell transcriptomics data, we infer the gene expression dynamics of early mouse embryonic stem (mES) cell differentiation, uncovering discrete transitions across nine cell states. We validate the predicted transitions across discrete states using flow cytometry. Moreover, using live-cell microscopy, we show that individual cells undergo abrupt transitions from a naïve to primed pluripotent state. Using the inferred discrete cell states to build a probabilistic model for the underlying gene regulatory network, we further predict and experimentally verify that these states have unique response to perturbations, thus defining them functionally. Our study provides a framework to infer the dynamics of differentiation from single cell transcriptomics data and to build predictive models of the gene regulatory networks that drive the sequence of cell fate decisions during development.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/physiology , Animals , Flow Cytometry , Gene Expression Profiling , Mice , Single-Cell Analysis
13.
PLoS Comput Biol ; 11(11): e1004345, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26544860

ABSTRACT

Deciphering how the regulatory DNA sequence of a gene dictates its expression in response to intra and extracellular cues is one of the leading challenges in modern genomics. The development of novel single-cell sequencing and imaging techniques, as well as a better exploitation of currently available single-molecule imaging techniques, provides an avenue to interrogate the process of transcription and its dynamics in cells by quantifying the number of RNA polymerases engaged in the transcription of a gene (or equivalently the number of nascent RNAs) at a given moment in time. In this paper, we propose that measurements of the cell-to-cell variability in the number of nascent RNAs provide a mostly unexplored method for deciphering mechanisms of transcription initiation in cells. We propose a simple kinetic model of transcription initiation and elongation from which we calculate nascent RNA copy-number fluctuations. To demonstrate the usefulness of this approach, we test our theory against published nascent RNA data for twelve constitutively expressed yeast genes. Rather than transcription being initiated through a single rate limiting step, as it had been previously proposed, our single-cell analysis reveals the presence of at least two rate limiting steps. Surprisingly, half of the genes analyzed have nearly identical rates of transcription initiation, suggesting a common mechanism. Our analytical framework can be used to extract quantitative information about dynamics of transcription from single-cell sequencing data, as well as from single-molecule imaging and electron micrographs of fixed cells, and provides the mathematical means to exploit the quantitative power of these technologies.


Subject(s)
Computational Biology/methods , Models, Genetic , RNA/analysis , RNA/metabolism , Transcription, Genetic/genetics , Algorithms , Cytoplasm/metabolism , DNA-Directed RNA Polymerases/metabolism , RNA/genetics , Yeasts/genetics , Yeasts/metabolism
14.
Methods ; 62(1): 13-25, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23557991

ABSTRACT

Genes in prokaryotic and eukaryotic cells are typically regulated by complex promoters containing multiple binding sites for a variety of transcription factors leading to a specific functional dependence between regulatory inputs and transcriptional outputs. With increasing regularity, the transcriptional outputs from different promoters are being measured in quantitative detail in single-cell experiments thus providing the impetus for the development of quantitative models of transcription. We describe recent progress in developing models of transcriptional regulation that incorporate, to different degrees, the complexity of multi-state promoter dynamics, and its effect on the transcriptional outputs of single cells. The goal of these models is to predict the statistical properties of transcriptional outputs and characterize their variability in time and across a population of cells, as a function of the input concentrations of transcription factors. The interplay between mathematical models of different regulatory mechanisms and quantitative biophysical experiments holds the promise of elucidating the molecular-scale mechanisms of transcriptional regulation in cells, from bacteria to higher eukaryotes.


Subject(s)
Gene Expression Regulation , Models, Genetic , RNA, Messenger/genetics , Transcription Factors/genetics , Transcription, Genetic , Bacteria , Binding Sites , Eukaryota , Promoter Regions, Genetic , Protein Binding , RNA, Messenger/metabolism , Single-Cell Analysis , Stochastic Processes , Transcription Factors/metabolism
15.
Annu Rev Biophys ; 42: 469-91, 2013.
Article in English | MEDLINE | ID: mdl-23527780

ABSTRACT

The biochemical processes leading to the synthesis of new proteins are random, as they typically involve a small number of diffusing molecules. They lead to fluctuations in the number of proteins in a single cell as a function of time and to cell-to-cell variability of protein abundances. These in turn can lead to phenotypic heterogeneity in a population of genetically identical cells. Phenotypic heterogeneity may have important consequences for the development of multicellular organisms and the fitness of bacterial colonies, raising the question of how it is regulated. Here we review the experimental evidence that transcriptional regulation affects noise in gene expression, and discuss how the noise strength is encoded in the architecture of the promoter region. We discuss how models based on specific molecular mechanisms of gene regulation can make experimentally testable predictions for how changes to the promoter architecture are reflected in gene expression noise.


Subject(s)
Gene Expression Regulation , Transcription, Genetic , Animals , Bacteria/genetics , Eukaryota/genetics , Humans , Models, Genetic , Promoter Regions, Genetic , Proteins/genetics , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL