Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38876905

ABSTRACT

Highly effective antiretroviral therapy (ART) has transformed human immunodeficiency virus (HIV) care in the past 3 decades. 30 years ago, how many would have imagined that a single-tablet daily ART regimen containing different drug classes could achieve sustained HIV-1 suppression and halt disease progression to acquired immunodeficiency syndrome (AIDS)? Despite this remarkable achievement, challenges in HIV care remain that require further innovation for ART. In this review, we focus on newly approved antiretroviral agents and those undergoing phase 2/3 clinical trials. These new antiretrovirals hold great promise to expand treatment options and fill gaps in HIV care.

2.
J Environ Manage ; 358: 120811, 2024 May.
Article in English | MEDLINE | ID: mdl-38608572

ABSTRACT

Soil sodicity is a growing concern for crop growth and development in arid and semi-arid regions of the world. Conservation agriculture (CA) provides an effective solution towards reclamation of degraded sodic lands and enhance the crop productivity. A field experiment was carried out to assess the sodic soil reclamation potential of CA based management practices including zero tillage, legume (mungbean; Mb) rotation, residue (+R) mulch, and subsurface drip irrigation (SDI) for three years under rice-wheat (RW) system. The system scenarios (Sc) comprised of multiple indicators to measure their impact on soil properties as well as system productivity, profitability, water and nitrogen use efficiency. The results indicated that soil pHs under Sc5-Sc8 (CA-based SDI scenarios) was significantly (p < 0.05) lowered by 2.16, 2.16 and 1.33% compare with mean of Sc1 and Sc2 (CT-based system; 9.10, 8.29 and 8.14) at all three soil layers (0-5, 5-15 and 15-30 cm), respectively. Similarly, the exchangeable sodium percentage (ESP) was lowered by 2.9, 11.2 and 14.9% under CA-based scenarios with residue management compared with CT-based system (mean of Sc1 and Sc2; 15.2, 17.2 and 28.6%) during the study. The concentration of extractable anions (COЗ2‾, HCOЗ‾, Cl‾) decreased notably whereas, soil organic carbon and soil solution cations (Na+, Ca2+, Mg2+) concentration were increased under CA based management SDI plots. In addition, CA with SDI scenarios (mean of Sc5-Sc8) proved to be more productive and water-efficient than CA-based flood irrigation (FI; mean of Sc3 and Sc4). Moreover, CA-based FI and SDI scenarios saved 29.5 and 60.7% irrigation water, and improved the partial factor productivity of nitrogen (PFPN) by 6.8 and 24.4%, respectively compared to CT-R (conventional tillage without residue) based Sc1. Therefore, CA practices can potentially reduce sodicity and improve soil chemical properties for profitable crop cultivation.


Subject(s)
Agriculture , Soil , Soil/chemistry , Agriculture/methods , Conservation of Natural Resources , Agricultural Irrigation , Crops, Agricultural , Nitrogen
3.
ACS Omega ; 8(41): 37991-38004, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37867637

ABSTRACT

The current study, which lasted 45 days, was designed to find a more effective way to use the vast resources of salt-affected land and ground saline water for aquaculture. Biochar made from agrowaste was used as a sediment amendment. The 100 g of biochar was applied to 25 kg of sediment (i.e., 9.0 ton ha-1) in 300L capacity fiber reinforced plastic, and Penaeus vannamei (P. vannamei) (2.74 ± 0.03 g) was stocked at 90 juveniles m-2 in inland ground saline water of salinity 10 ppt fortified with potassium levels that are 50% equivalent to those of seawater. Among different treatments, T1 indicates paddy straw biochar (PSB) application in sediment; T2 indicates sediment amended with KOH-activated PSB; T3 indicates sugar cane bagasse biochar (SBB) application in sediment; and T4 indicates sediment amended with KOH-activated SBB. Compared to the control the potassium (K+), alkalinity, total hardness, calcium/magnesium ratio, and pH of the water increased significantly (P ≤ 0.05) in treatments where biochar was used as an amendment in sediment. The T3 treatment had the best Ca/Mg ratio (1.00:3.12). In water, the magnitude of increase in K+ concentration from high to low followed the order: T2 > T4 > T1 > T3 > control. The concentration of NH4+-N in water was found to be increasing in control, whereas in the rest of the treatments, it decreased significantly from day 1, until the end of the experiment. Compared to control, the bulk density was decreased, and sediment cation exchange capacity and water holding capacity were increased significantly in treatments where biochar was used as an amendment. The soil microbial parameter measured in terms of soil enzyme dehydrogenase was significantly different among treatments at the end of the experiment. Weight gain (%), specific growth rate (SGR), survival (%), and feed conversion ratio of P. vannamei varied significantly in T1, T2, T3, and T4 compared to the control. The SGR (2.38b ± 0.05% day-1) and weight gain (%) in T2, and survival (96.1b ± 2.0%) in T3 treatment were found to be the highest at the end of the experiment. When biochar was mixed with sediment in the inland saline system, an improvement was seen in sediment quality, water quality, and growth characteristics of P. vannamei.

4.
JAMA Netw Open ; 6(7): e2323349, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37440227

ABSTRACT

Importance: Current data identifying COVID-19 risk factors lack standardized outcomes and insufficiently control for confounders. Objective: To identify risk factors associated with COVID-19, severe COVID-19, and SARS-CoV-2 infection. Design, Setting, and Participants: This secondary cross-protocol analysis included 4 multicenter, international, randomized, blinded, placebo-controlled, COVID-19 vaccine efficacy trials with harmonized protocols established by the COVID-19 Prevention Network. Individual-level data from participants randomized to receive placebo within each trial were combined and analyzed. Enrollment began July 2020 and the last data cutoff was in July 2021. Participants included adults in stable health, at risk for SARS-CoV-2, and assigned to the placebo group within each vaccine trial. Data were analyzed from April 2022 to February 2023. Exposures: Comorbid conditions, demographic factors, and SARS-CoV-2 exposure risk at the time of enrollment. Main Outcomes and Measures: Coprimary outcomes were COVID-19 and severe COVID-19. Multivariate Cox proportional regression models estimated adjusted hazard ratios (aHRs) and 95% CIs for baseline covariates, accounting for trial, region, and calendar time. Secondary outcomes included severe COVID-19 among people with COVID-19, subclinical SARS-CoV-2 infection, and SARS-CoV-2 infection. Results: A total of 57 692 participants (median [range] age, 51 [18-95] years; 11 720 participants [20.3%] aged ≥65 years; 31 058 participants [53.8%] assigned male at birth) were included. The analysis population included 3270 American Indian or Alaska Native participants (5.7%), 7849 Black or African American participants (13.6%), 17 678 Hispanic or Latino participants (30.6%), and 40 745 White participants (70.6%). Annualized incidence was 13.9% (95% CI, 13.3%-14.4%) for COVID-19 and 2.0% (95% CI, 1.8%-2.2%) for severe COVID-19. Factors associated with increased rates of COVID-19 included workplace exposure (high vs low: aHR, 1.35 [95% CI, 1.16-1.58]; medium vs low: aHR, 1.41 [95% CI, 1.21-1.65]; P < .001) and living condition risk (very high vs low risk: aHR, 1.41 [95% CI, 1.21-1.66]; medium vs low risk: aHR, 1.19 [95% CI, 1.08-1.32]; P < .001). Factors associated with decreased rates of COVID-19 included previous SARS-CoV-2 infection (aHR, 0.13 [95% CI, 0.09-0.19]; P < .001), age 65 years or older (aHR vs age <65 years, 0.57 [95% CI, 0.50-0.64]; P < .001) and Black or African American race (aHR vs White race, 0.78 [95% CI, 0.67-0.91]; P = .002). Factors associated with increased rates of severe COVID-19 included race (American Indian or Alaska Native vs White: aHR, 2.61 [95% CI, 1.85-3.69]; multiracial vs White: aHR, 2.19 [95% CI, 1.50-3.20]; P < .001), diabetes (aHR, 1.54 [95% CI, 1.14-2.08]; P = .005) and at least 2 comorbidities (aHR vs none, 1.39 [95% CI, 1.09-1.76]; P = .008). In analyses restricted to participants who contracted COVID-19, increased severe COVID-19 rates were associated with age 65 years or older (aHR vs <65 years, 1.75 [95% CI, 1.32-2.31]; P < .001), race (American Indian or Alaska Native vs White: aHR, 1.98 [95% CI, 1.38-2.83]; Black or African American vs White: aHR, 1.49 [95% CI, 1.03-2.14]; multiracial: aHR, 1.81 [95% CI, 1.21-2.69]; overall P = .001), body mass index (aHR per 1-unit increase, 1.03 [95% CI, 1.01-1.04]; P = .001), and diabetes (aHR, 1.85 [95% CI, 1.37-2.49]; P < .001). Previous SARS-CoV-2 infection was associated with decreased severe COVID-19 rates (aHR, 0.04 [95% CI, 0.01-0.14]; P < .001). Conclusions and Relevance: In this secondary cross-protocol analysis of 4 randomized clinical trials, exposure and demographic factors had the strongest associations with outcomes; results could inform mitigation strategies for SARS-CoV-2 and viruses with comparable epidemiological characteristics.


Subject(s)
COVID-19 , Adult , Humans , Male , Middle Aged , COVID-19/epidemiology , COVID-19 Vaccines , Demography , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , SARS-CoV-2 , Adolescent , Young Adult , Aged , Aged, 80 and over
5.
Plants (Basel) ; 12(6)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36987051

ABSTRACT

Bacterial blight (BB) is a devastating disease of rice in the tropics of Indian sub-continent, where the presence of Xoo races with varying levels of genetic diversity and virulence renders disease management extremely challenging. In this context, marker-assisted improvement of plant resistance has been proven as one of the most promising approaches for the development of sustainable rice cultivars. The present study demonstrates the marker-assisted introgression of the three BB resistant genes (Xa21 + xa13 + xa5) into the background of HUR 917, a popular aromatic short grain (ASG) rice cultivar in India. The performance of the resulting improved products (near isogenic lines (NILs), HR 23-5-37-83-5, HR 23-5-37-121-10, HR 23-5-37-121-14, HR 23-65-6-191-13, HR 23-65-6-237-2, HR 23-65-6-258-10 and HR 23-65-6-258-21) establishes the utility of marker-assisted selection (MAS) approach for accelerated trait introgression in rice. The MAS-bred lines carrying three introgressed genes showed broad spectrum BB resistance (lesion length, LL of 1.06 ± 1.35 cm to 4.61 ± 0.87 cm). Besides, these improved lines showed the complete product profile of recurrent parent HUR 917 along with the enhanced level of durable BB resistance. The improved introgression lines with durable BB resistance would contribute to sustainable rice production in India, particularly in the Indo-Gangetic plane that has substantial acreage under HUR 917.

6.
Front Microbiol ; 13: 986519, 2022.
Article in English | MEDLINE | ID: mdl-36583046

ABSTRACT

Fungal communities in agricultural soils are assumed to be affected by climate, weather, and anthropogenic activities, and magnitude of their effect depends on the agricultural activities. Therefore, a study was conducted to investigate the impact of the portfolio of management practices on fungal communities and soil physical-chemical properties. The study comprised different climate-smart agriculture (CSA)-based management scenarios (Sc) established on the principles of conservation agriculture (CA), namely, ScI is conventional tillage-based rice-wheat rotation, ScII is partial CA-based rice-wheat-mungbean, ScIII is partial CSA-based rice-wheat-mungbean, ScIV is partial CSA-based maize-wheat-mungbean, and ScV and ScVI are CSA-based scenarios and similar to ScIII and ScIV, respectively, except for fertigation method. All the scenarios were flood irrigated except the ScV and ScVI where water and nitrogen were given through subsurface drip irrigation. Soils of these scenarios were collected from 0 to 15 cm depth and analyzed by Illumina paired-end sequencing of Internal Transcribed Spacer regions (ITS1 and ITS2) for the study of fungal community composition. Analysis of 5 million processed sequences showed a higher Shannon diversity index of 1.47 times and a Simpson index of 1.12 times in maize-based CSA scenarios (ScIV and ScVI) compared with rice-based CSA scenarios (ScIII and ScV). Seven phyla were present in all the scenarios, where Ascomycota was the most abundant phyla and it was followed by Basidiomycota and Zygomycota. Ascomycota was found more abundant in rice-based CSA scenarios as compared to maize-based CSA scenarios. Soil organic carbon and nitrogen were found to be 1.62 and 1.25 times higher in CSA scenarios compared with other scenarios. Bulk density was found highest in farmers' practice (Sc1); however, mean weight diameter and water-stable aggregates were found lowest in ScI. Soil physical, chemical, and biological properties were found better under CSA-based practices, which also increased the wheat grain yield by 12.5% and system yield by 18.8%. These results indicate that bundling/layering of smart agricultural practices over farmers' practices has tremendous effects on soil properties, and hence play an important role in sustaining soil quality/health.

7.
Sci Rep ; 12(1): 14371, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35999342

ABSTRACT

Indo-Gangetic plains (IGP) of South Asia have supported bulk of human and bovine population in the region since ages, and a spectacular progress has been made in food production. However, malnutrition, diminishing total factor productivity, and natural resource degradation continue to plague this cereal-dominated region, which is also vulnerable to climate change. Addressing these challenges would require a transition towards diversifying cereal rotations with agroecological cropping systems. A study was, therefore, conducted at the experimental farm of ICAR-CSSRI, Karnal on crop diversification and sustainable intensification options using agro-ecological approaches such as Conservation Agriculture (CA) and diversified cropping systems to ensure food and nutritional security while sustaining the natural resources. On 2 years mean basis, CA-based cropping system management scenarios (mean of Sc2-Sc7) using diversified crop rotations; increased the system yield by 15.4%, net return by 28.7%, protein yield by 29.7%, while using 53.0% less irrigation water compared to conventional tillage (CT)-based rice-wheat system (Sc1). Maize-mustard-mungbean on permanent beds (PBs) (Sc4) recorded the highest productivity (+ 40.7%), profitability (+ 60.1%), and saved 81.8% irrigation water compared to Sc1 (11.8 Mg ha-1; 2190 USD ha-1; 2514 mm ha-1). Similarly, Sc5 (maize-wheat-mungbean on PBs) improved productivity (+ 32.2%), profitability (+ 57.4%) and saved irrigation water (75.5%) compared to Sc1. In terms of nutritional value, Sc5 was more balanced than other scenarios, and produced 43.8, 27.5 and 259.8% higher protein, carbohydrate and fat yields, respectively, compared to Sc1 (0.93, 8.55 and 0.14 Mg ha-1). Scenario 5 was able to meet the nutrient demand of 19, 23 and 32 additional persons ha-1 year-1 with respect to protein, carbohydrate and fat, respectively, compared to Sc1. The highest protein water productivity (~ 0.31 kg protein m-3 water) was recorded with CA-based soybean-wheat-mungbean (Sc6) system followed by maize-mustard-mungbean on PBs (Sc4) system (~ 0.29 kg protein m-3) and lowest under Sc1. Integration of short duration legume (mungbean) improved the system productivity by 17.2% and profitability by 32.1%, while triple gains in irrigation water productivity compared to CT-based systems. In western IGP, maize-wheat-mungbean on PBs was found most productive, profitable and nutritionally rich and efficient system compared to other systems. Therefore, diversification of water intensive cereal rotations with inclusion of legumes and CA-based management optimization can be potential option to ensure nutritious food for the dwelling communities and sustainability of natural resources in the region.


Subject(s)
Agriculture , Crops, Agricultural , Agriculture/methods , Animals , Carbohydrates , Cattle , Edible Grain , Humans , Triticum , Water , Zea mays
8.
J Virus Erad ; 8(2): 100073, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35784676

ABSTRACT

Antiretroviral therapy (ART) for HIV-1 has dramatically improved outcomes for people living with HIV-1 but requires life-long adherence and can be associated with short and long-term toxicity. Numerous pre-clinical and clinical investigations are underway to develop therapies for immune control of HIV-1 in the absence of ART. The success of chimeric antigen receptor (CAR) cell therapy for hematological malignancy has renewed efforts to develop and investigate CAR cells as strategies to enhance HIV-1 immunity, enable virus control or elimination, and allow ART-free HIV-1 remission. Here, we review the improvements in anti-HIV-1 CAR cell therapy in the two decades since their initial clinical trials were conducted, describe the additional engineering required to protect CAR cells from HIV-1 infection, and preview the current landscape of CAR cell therapies advancing to HIV-1 clinical trials.

9.
Front Microbiol ; 13: 902996, 2022.
Article in English | MEDLINE | ID: mdl-35847064

ABSTRACT

Melioidosis is a seasonal infectious disease in tropical and subtropical areas caused by the soil bacterium Burkholderia pseudomallei. In many parts of the world, including South West India, most cases of human infections are reported during times of heavy rainfall, but the underlying causes of this phenomenon are not fully understood. India is among the countries with the highest predicted melioidosis burden globally, but there is very little information on the environmental distribution of B. pseudomallei and its determining factors. The present study aimed (i) to investigate the prevalence of B. pseudomallei in soil in South West India, (ii) determine geochemical factors associated with B. pseudomallei presence and (iii) look for potential seasonal patterns of B. pseudomallei soil abundance. Environmental samplings were performed in two regions during the monsoon and post-monsoon season and summer from July 2016 to November 2018. We applied direct quantitative real time PCR (qPCR) together with culture protocols to overcome the insufficient sensitivity of solely culture-based B. pseudomallei detection from soil. A total of 1,704 soil samples from 20 different agricultural sites were screened for the presence of B. pseudomallei. Direct qPCR detected B. pseudomallei in all 20 sites and in 30.2% (517/1,704) of all soil samples, whereas only two samples from two sites were culture-positive. B. pseudomallei DNA-positive samples were negatively associated with the concentration of iron, manganese and nitrogen in a binomial logistic regression model. The highest number of B. pseudomallei-positive samples (42.6%, p < 0.0001) and the highest B. pseudomallei loads in positive samples [median 4.45 × 103 genome equivalents (GE)/g, p < 0.0001] were observed during the monsoon season and eventually declined to 18.9% and a median of 1.47 × 103 GE/g in summer. In conclusion, our study from South West India shows a wide environmental distribution of B. pseudomallei, but also considerable differences in the abundance between sites and within single sites. Our results support the hypothesis that nutrient-depleted habitats promote the presence of B. pseudomallei. Most importantly, the highest B. pseudomallei abundance in soil is seen during the rainy season, when melioidosis cases occur.

10.
Antivir Ther ; 27(2): 13596535211062396, 2022 04.
Article in English | MEDLINE | ID: mdl-35492017

ABSTRACT

A co-formulated, one pill once a day antiretroviral regimen (single-tablet regimen), containing efavirenz, emtricitabine, and tenofovir disoproxyl fumarate (Atripla), revolutionized the antiretroviral therapy landscape. Single-tablet regimens provide not only dosing convenience but help optimize adherence and persistence with antiretroviral therapy to achieve durably suppressed viremia with both individual and societal benefits. Given the many excellent options available now, single-tablet regimens are the preferred choice for initiating antiretroviral therapy in almost all patients with rare exceptions for drug interactions and pregnancy, and for simplification of more complex antiretroviral therapy to a single-tablet regimen. In this special commemorative article, we celebrate this astounding advancement in antiretroviral therapy, championed by John C. Martin while CEO of Gilead Sciences, and its transformative impact on HIV care nationally and globally.


Subject(s)
Anti-HIV Agents , HIV Infections , Organophosphonates , Adenine/therapeutic use , Deoxycytidine , Drug Combinations , HIV Infections/drug therapy , Humans , Organophosphonates/therapeutic use , Tablets/therapeutic use
11.
Sci Rep ; 11(1): 15901, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354160

ABSTRACT

Climate-smart agriculture (CSA)-based management practices are getting popular across South-Asia as an alternative to the conventional system for particular weed suppression, resources conservation and environmental quality. An 8-year study (2012-2013 to 2019-2020) was conducted to understand the shift in weed density and diversity under different CSA-based management practices called scenarios (Sc). These Sc involved: Sc1, conventional tillage (CT)-based rice-wheat system with flood irrigation (farmers' practice); Sc2, CT-rice, zero tillage (ZT)-wheat-mungbean with flood irrigation (partial CA-based); Sc3, ZT rice-wheat-mungbean with flood irrigation (partial CSA-based rice); Sc4, ZT maize-wheat-mungbean with flood irrigation (partial CSA-based maize); Sc5, ZT rice-wheat-mungbean with subsurface drip irrigation (full CSA-based rice); and Sc6, ZT maize-wheat-mungbean with subsurface drip irrigation (full CSA-based maize). The most abundant weed species were P. minor > A. arvensis > M. indicus > C. album and were favored by farmers' practice. However, CSA-based management practices suppressed these species and favored S. nigrum and R. dentatus and the effect of CSAPs was more evident in the long-term. Maximum total weed density was observed for Sc1, while minimum value was recorded under full CSA-based maize systems, where seven weed-species vanished, and P. minor density declined to 0.33 instead of 25.93 plant m-2 after 8-years of continuous cultivation. Full CSA-based maize-wheat system could be a promising alternative for the conveniently managed rice-wheat system in weed suppression in north-west India.

12.
J Genet Eng Biotechnol ; 19(1): 99, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34181159

ABSTRACT

BACKGROUND: Soil salinity has been one of the biggest hurdles in achieving better crop yield and quality. Plant growth-promoting rhizobacteria (PGPR) are the symbiotic heterogeneous bacteria that play an important role in the recycling of plant nutrients through phytostimulation and phytoremediation. In this study, bacterial isolates were isolated from salt-polluted soil of Jhajjar and Panipat districts of Haryana, India. The potential salt-tolerant bacteria were screened for their PGPR activities such as phosphate solubilization, hydrogen cyanide (HCN), indole acetic acid (IAA) and ammonia production. The molecular characterization of potent isolates with salt tolerance and PGPR activity was done by 16S rDNA sequencing. RESULTS: Eighteen soil samples from saline soils of Haryana state were screened for salt-tolerant bacteria. The bacterial isolates were analyzed for salt tolerance ranging from 2 to 10%. Thirteen isolates were found salt tolerant at varied salt concentrations. Isolates HB6P2 and HB6J2 showed maximum tolerance to salts at 10% followed by HB4A1, HB4N3 and HB8P1. All the salt-tolerant bacterial isolates showed HCN production with maximum production by HB6J2. Phosphate solubilization was demonstrated by three isolates viz., HB4N3, HB6P2 and HB6J2. IAA production was maximum in HB4A1 (15.89) and HB6P2 (14.01) and least in HB4N3 (8.91). Ammonia production was maximum in HB6P2 (12.3) and least in HB8P1 (6.2). Three isolates HB6J2, HB8P1 and HB4N3 with significant salt tolerance, and PGPR ability were identified through sequencing of amplified 16SrRNA gene and were found to be Bacillus paramycoides, Bacillus amyloliquefaciens and Bacillus pumilus, respectively. CONCLUSIONS: The salt-tolerant plant growth-promoting rhizobacteria (PGPR) isolated from saline soil can be used to overcome the detrimental effects of salt stress on plants, with beneficial effects of physiological functions of plants such as growth and yield, and overcome disease resistance. Therefore, application of microbial inoculants to alleviate stresses and enhance yield in plants could be a low cost and environmental friendly option for the management of saline soil for better crop productivity.

13.
Eur J Soil Biol ; 103: 103292, 2021.
Article in English | MEDLINE | ID: mdl-33767576

ABSTRACT

In agriculture production system, soil enzymes are important indicators of soil quality. Measurements of soil quality parameter changes are essential for assessing the impact of soil and crop management practices. Keeping this in view, an experiment was conducted to evaluate the enzyme activities namely dehydrogenase (DHA), ß-glucosidase, acid and alkaline phosphatase (AcP & AlP), fluorescein diacetate hydrolases (FDH), cellulase, urease and aryl sulphatase in rhizosphere and bulk soil after 8 years of different management regimes. Soil organic carbon (SOC), moisture content and few enzyme indices such as enzymatic pH indicator (AcP/AlP), alteration index three (Al3) and geometric mean (GMea) were also measured. The treatments were conventional rice-wheat system (termed as scenario (Sc1), CT system), partial conservation agriculture (CA)-based rice-wheat-mungbean system (Sc2, PCA-RW), partial climate smart agriculture (CSA)-based rice-wheat-mungbean system (Sc3), partial CSA-based maize-wheat-mungbean system (Sc4), full CSA-based rice-wheat-mungbean system (Sc5), and full CSA-based maize-wheat-mungbean system (Sc6). Soil samples were collected from rhizosphere and away from roots (bulk soil) at 0-15 cm soil depth before sowing (from rhizosphere of previous crops), at maximum tillering, flowering, and after harvesting of wheat crop. Results showed that DHA activity was higher before sowing (59.8%), at maximum tillering (48.4%), flowering (8.6%) and after harvesting (19.1%) in rice based CSA systems (mean of Sc3 and Sc5) over maize based CSA systems (mean of Sc4 and Sc6) in rhizospheric soil. On average, ß-glucosidase activity was significantly higher in rhizospheric soils of rice based system over maize based CSA system. Before sowing of wheat, significantly higher (21.4%) acid phosphatase activity was observed in rhizosphere over bulk soils of maize based CSA system. Significantly higher alkaline phosphatase activity was observed before sowing of wheat in bulk soils of rice (25.3%) and maize (38.5%) based CSA systems over rhizospheric soils. Rice based CSA systems showed 27% higher FDH activity than maize based systems. Significant interaction effect was observed between the managements and enzymes. SOC played an important role in regulating the enzymes activity both in rhizosphere and bulk soil. Significant variation in AcP/AlP, Al3 and GMea was observed among the managements. Therefore, CSA managements are beneficial in improving enzyme activities not only in rhizosphere but also in bulk soil where residues are retained thereby may help in improving nutrient cycling.

14.
Article in English | MEDLINE | ID: mdl-33625699

ABSTRACT

Open field burning of crop residue causes severe air pollution and greenhouse gas emission contributing to global warming. In order to seek an alternative, the current study was initiated to explore the prospective of lignocellulolytic microbes to expedite in situ decomposition of crop residues. Field trials on farmers' field were conducted in the state of Haryana and Maharashtra, to target the burning of rice and wheat residue and sugarcane trash, respectively. A comparative study among crop residue removal (CRR), crop residue burning (CRB) and in situ decomposition of crop residues (IND) revealed that IND of rice and wheat residues took 30 days whereas IND of sugarcane trash took 45 days. The decomposition status was assessed by determining the initial and final lignin to cellulose ratio which increased significantly from 0.23 to 0.25, 0.21 to 0.23 and 0.24 to 0.27 for rice, wheat residues and sugarcane trash, respectively. No yield loss was noticed in IND for both rice-wheat system and sugarcane-based system; rather IND showed relatively better crop yield as well as soil health parameters than CRB and CRR. Furthermore, the environmental impact assessment of residue burning indicated a substantial loss of nutrients (28-31, 23-25 and 51-77 kg ha-1 of N+P2O5+K2O for rice, wheat and sugarcane residue) as well as the emission of pollutants to the atmosphere. However, more field trials, as well as refinement of the technology, are warranted to validate and establish the positive potential of in situ decomposition of crop residue to make it a successful solution against the crop residue burning.

15.
Sci Rep ; 10(1): 19267, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33159103

ABSTRACT

In the western Indo-Gangetic plains, issues of deterioration in soil, water, and environment quality coupled with low profitability jeopardize the sustainability of the dominant rice-wheat (RW) system. To address these issues, crop diversification and conservation agriculture (CA)-based management hold considerable promise but the adoption of both approaches has been low, and additional evidence generation from a multi-criteria productivity and sustainability perspective is likely required to help drive the change. Compared to prevailing farmers' practice (FP), results suggest that CA-based rice management increased profitability by 13% and energy use efficiency (EUE) by 21% while reducing irrigation by 19% and global warming potential (GWP) by 28%. By substituting CA-based maize for rice, similar mean profitability gains were realized (16%) but transformative improvements in irrigation (- 84%), EUE (+ 231%), and GWP (- 95%) were observed compared to FP. Inclusion of mungbean in the rotation (i.e. maize-wheat-mungbean) with CA-based management increased the system productivity, profitability, and EUE by 11, 25 and 103%, respectively while decreasing irrigation water use by 64% and GWP by 106% compared to FP. Despite considerable benefits from the CA-based maize-wheat system, adoption of maize is not widespread due to uneven market demand and assured price guarantees for rice.

16.
Front Microbiol ; 11: 1812, 2020.
Article in English | MEDLINE | ID: mdl-32849419

ABSTRACT

Soil microorganisms play a critical role in soil biogeochemical processes, nutrient cycling, and resilience of agri-food systems and are immensely influenced by agronomic management practices. Understanding soil bacterial community and nutrient dynamics under contrasting management practices is of utmost importance for building climate-smart agri-food systems. Soil samples were collected at 0-15 cm soil depth from six management scenarios in long-term conservation agriculture (CA) and climate-smart agriculture (CSA) practices. These scenarios (Sc) involved; ScI-conventional tillage based rice-wheat rotation, ScII- partial CA based rice-wheat-mungbean, ScIII- partial CSA based rice-wheat-mungbean, ScIV is partial CSA based maize-wheat-mungbean, ScV and ScVI are CSA based scenarios, were similar to ScIII and ScIV respectively, layered with precision water & nutrient management. The sequencing of soil DNA results revealed that across the six scenarios, a total of forty bacterial phyla were observed, with Proteobacteria as dominant in all scenarios, followed by Acidobacteria and Actinobacteria. The relative abundance of Proteobacteria was 29% higher in rice-based CSA scenarios (ScIII and ScV) and 16% higher in maize-based CSA scenarios (ScIV and ScVI) compared to conventional-till practice (ScI). The relative abundance of Acidobacteria and Actinobacteria was respectively 29% and 91% higher in CT than CSA based rice and 27% and 110% higher than maize-based scenarios. Some taxa are present relatively in very low abundance or exclusively in some scenarios, but these might play important roles there. Three phyla are exclusively present in ScI and ScII i.e., Spirochaetes, Thermi, and Euryarchaeota. Shannon diversity index was 11% higher in CT compared to CSA scenarios. Maize based CSA scenarios recorded higher diversity indices than rice-based CSA scenarios. Similar to changes in soil bacterial community, the nutrient dynamics among the different scenarios also varied significantly. After nine years of continuous cropping, the soil organic carbon was improved by 111% and 31% in CSA and CA scenarios over the CT scenario. Similarly, the available nitrogen, phosphorus, and potassium were improved by, respectively, 38, 70, and 59% in CSA scenarios compared to the CT scenario. These results indicate that CSA based management has a positive influence on soil resilience in terms of relative abundances of bacterial groups, soil organic carbon & available plant nutrients and hence may play a critical role in the sustainability of the intensive cereal based agri-food systems.

17.
Soil Tillage Res ; 199: 104595, 2020 May.
Article in English | MEDLINE | ID: mdl-32362695

ABSTRACT

Climate smart agriculture (CSA) practices are emerging as sustainable alternative to conventional rice-wheat system to pull up natural resources degradation across south Asia. After five years of continuous CSA based experiment, a two years study was conducted to evaluate changes in microbial biomasses (microbial biomass carbon and nitrogen), enzyme activities (alkaline phosphatase, dehydrogenase and ß-glucosidase), nutrient release and uptake (N, P and K) at different wheat crop growth stages. Effect of CSA practices was also studied for carbon mineralization in an incubation experiment. Four scenarios (Sc) were included in this study- conventional tillage (CT) based rice-wheat system (Sc1), partial CSA based rice-wheat-mungbean system (Sc2), full CSA based rice-wheat-mungbean system (Sc3), and full CSA based maize-wheat-mungbean system (Sc4). Soil samples were collected from scenarios at 0-15 and 15-30 cm depth at different growth stages of wheat crop namely sowing, crown root initiation (CRI), active tillering, panicle initiation, and harvesting. Analysis of soil was done for chemical properties viz. pH, electrical conductivity, available N, P, K, NPK uptake and mineralizable carbon and biological properties viz., microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), dehydrogenase activity (DHA), alkaline phosphatase activity (APA) and ß-glucosidase. Significantly higher microbial biomass carbon (42 %) and nitrogen (79 %) were found in surface soil (0-15 cm depth) under CSA based scenarios (Sc2, Sc3 and Sc4) at harvest stage of wheat over CT based/ conventional scenario (Sc1). At surface soil, alkaline phosphatase, dehydrogenase and ß-glucosidase activity was 58, 14 and 13 % higher in CSA based scenarios, respectively than CT based scenario. CSA based scenarios showed significantly higher C mineralization after 3 days of the incubation experiment at harvest. An increase of respectively 15, 48 and 17 % of N, P and K uptake was observed with CSA based scenarios than CT based scenario. At harvest stage, 7 % higher amount of dry matter was reported with full CSA based scenarios (mean of Sc2 to Sc4) compared to Sc1. Higher wheat grain yield of ∼10 % was recorded with CSA based scenarios over CT based scenario. Therefore, CSA based scenarios with improved biological properties and nutrient availability and uptake at different wheat growth stages resulted in higher yields and hence need to be popularized among the farmers.

18.
Sci Rep ; 9(1): 17929, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31784647

ABSTRACT

A study was conducted to design productive, profitable, irrigation water¸ nitrogen and energy use efficient intensive cereal systems (rice-wheat; RW and maize-wheat; MW) in North-West India. Bundling of conservation agriculture (CA) with sub-surface drip irrigation termed as CA+ were compared with CA alone and conventional tillage based and flood irrigated RW rotation (farmer's practice; ScI). In contrast to conventional till RW rotation which consumed 1889 mm ha-1 irrigation water (2-yr mean), CA+ system saved 58.4 and 95.5% irrigation water in RW and MW rotations, respectively. CA+ practices saved 45.8 and 22.7% of irrigation water in rice and maize, respectively compared to CA with flood irrigation. On a system basis, CA+ practices saved 46.7 and 44.7% irrigation water under RW (ScV) and MW (ScVI) systems compared to their respective CA-based systems with flood irrigation (ScIII and ScIV). CA+ in RW system recorded 11.2% higher crop productivity and improved irrigation water productivity by 145% and profitability by 29.2% compared to farmers' practice. Substitution of rice with maize (MW system; ScVI) recorded 19.7% higher productivity, saved 84.5% of irrigation water and increased net returns by 48.9% compared to farmer's practice. CA+ RW and MW system improved energy productivity by 75 and 169% and partial factor productivity of N by 44.6 and 49.6%, respectively compared to ScI. The sub-surface drip irrigation system saved the fertilizer N by 20% under CA systems. CA+ in RW and MW systems recorded ~13 and 5% (2-yr mean) higher profitability with 80% subsidy on installing sub-surface drip irrigation system and similar profitability without subsidy scenario compared with their respective flood irrigated CA-based systems.

19.
Carbon Manag ; 10(1): 37-50, 2019.
Article in English | MEDLINE | ID: mdl-32256713

ABSTRACT

Carbon (C) mineralization of crop residues is an important process occurring in soil which is helpful in predicting CO2 emission to the atmosphere and nutrient availability to plants. A laboratory experiment was conducted in which C mineralization of residues of rice (Oryza sativa), wheat (Triticum aestivum), maize (Zea mays), mungbean (Vigna radiata) and their mixtures was applied to the soil surface or incorporated into an Alfisols from Northwest India. C mineralization was significantly affected by residue placement and type and their interactions. Rice residue had a higher decomposition rate (k = 0.121 and 0.076 day-1) than wheat (0.073 and 0.042 day-1) and maize residues (0.041 day-1) irrespective of placements. Higher decomposition rates of rice and wheat were observed when placed on soil surface than incorporated in the soils. Additive effects of the contribution of each residue type to C mineralization of the residue mixture were observed. When mungbean residue was added to the rice/wheat or maize/wheat mixture, decomposition of the residue mixture was enhanced. Crop residues with low N and high C/N ratio such as maize, wheat, rice and their mixtures can be applied on the soil surface for faster C and N mineralization, thereby helping to manage high volumes of residues under conservation agriculture-based practices in northwest India.

20.
Arch Acker Pflanzenbau Bodenkd ; 64(4): 531-545, 2018.
Article in English | MEDLINE | ID: mdl-30363929

ABSTRACT

Soil quality degradation associated with resources scarcity is the major concern for the sustainability of conventional rice-wheat system in South Asia. Replacement of conventional management practices with conservation agriculture (CA) is required to improve soil quality. A field experiment was conducted to assess the effect of CA on soil physical (bulk density, penetration resistance, infiltration) and chemical (N, P, K, S, micronutrients) properties after 4 years in North-West India. There were four scenarios (Sc) namely conventional rice-wheat cropping system (Sc1); partial CA-based rice-wheat-mungbean system (RWMS) (Sc2); CA-based RWMS (Sc3); and CA-based maize-wheat-mungbean (Sc4) system. Sc2 (1.52 Mg m-3) showed significantly lower soil bulk density (BD). In Sc3 and Sc4, soil penetration resistance (SPR) was reduced and infiltration was improved compared to Sc1. Soil organic C was significantly higher in Sc4 than Sc1. Available N was 33% and 68% higher at 0-15 cm depth in Sc3 and Sc4, respectively, than Sc1. DTPA extractable Zn and Mn were significantly higher under Sc3 and Sc4 compared to Sc1. Omission study showed 30% saving in N and 50% in K in wheat after four years. Therefore, CA improved soil properties and nutrient availability and have potential to reduce external fertilizer inputs in long run.

SELECTION OF CITATIONS
SEARCH DETAIL
...