Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Biomedicines ; 12(1)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38255267

ABSTRACT

We hypothesized that subjects with heterozygous loss-of-function (LoF) ACE mutations are at risk for Alzheimer's disease because amyloid Aß42, a primary component of the protein aggregates that accumulate in the brains of AD patients, is cleaved by ACE (angiotensin I-converting enzyme). Thus, decreased ACE activity in the brain, either due to genetic mutation or the effects of ACE inhibitors, could be a risk factor for AD. To explore this hypothesis in the current study, existing SNP databases were analyzed for LoF ACE mutations using four predicting tools, including PolyPhen-2, and compared with the topology of known ACE mutations already associated with AD. The combined frequency of >400 of these LoF-damaging ACE mutations in the general population is quite significant-up to 5%-comparable to the frequency of AD in the population > 70 y.o., which indicates that the contribution of low ACE in the development of AD could be under appreciated. Our analysis suggests several mechanisms by which ACE mutations may be associated with Alzheimer's disease. Systematic analysis of blood ACE levels in patients with all ACE mutations is likely to have clinical significance because available sequencing data will help detect persons with increased risk of late-onset Alzheimer's disease. Patients with transport-deficient ACE mutations (about 20% of damaging ACE mutations) may benefit from preventive or therapeutic treatment with a combination of chemical and pharmacological (e.g., centrally acting ACE inhibitors) chaperones and proteosome inhibitors to restore impaired surface ACE expression, as was shown previously by our group for another transport-deficient ACE mutation-Q1069R.

2.
Nat Commun ; 14(1): 8376, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104120

ABSTRACT

Most hypertension-related genome-wide association studies (GWASs) focus on non-African populations, despite hypertension (a major risk factor for cardiovascular disease) being highly prevalent in Africa. The AWI-Gen study GWAS meta-analysis for blood pressure (BP)-related traits (systolic and diastolic BP, pulse pressure, mean-arterial pressure and hypertension) from three sub-Saharan African geographic regions (N = 10,775), identifies two novel genome-wide significant signals (p < 5E-08): systolic BP near P2RY1 (rs77846204; intergenic variant, p = 4.95E-08) and pulse pressure near LINC01256 (rs80141533; intergenic variant, p = 1.76E-08). No genome-wide signals are detected for the AWI-Gen GWAS meta-analysis with previous African-ancestry GWASs (UK Biobank (African), Uganda Genome Resource). Suggestive signals (p < 5E-06) are observed for all traits, with 29 SNPs associating with more than one trait and several replicating known associations. Polygenic risk scores (PRSs) developed from studies on different ancestries have limited transferability, with multi-ancestry PRS providing better prediction. This study provides insights into the genetics of BP variation in African populations.


Subject(s)
Genome-Wide Association Study , Hypertension , Humans , Blood Pressure/genetics , Hypertension/epidemiology , Hypertension/genetics , Black People/genetics , Uganda , Polymorphism, Single Nucleotide
3.
Am J Hum Genet ; 110(10): 1690-1703, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37673066

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) has a high disease burden in sub-Saharan Africa and has a very poor prognosis. Genome-wide association studies (GWASs) of ESCC in predominantly East Asian populations indicate a substantial genetic contribution to its etiology, but no genome-wide studies have been done in populations of African ancestry. Here, we report a GWAS in 1,686 African individuals with ESCC and 3,217 population-matched control individuals to investigate its genetic etiology. We identified a genome-wide-significant risk locus on chromosome 9 upstream of FAM120A (rs12379660, p = 4.58 × 10-8, odds ratio = 1.28, 95% confidence interval = 1.22-1.34), as well as a potential African-specific risk locus on chromosome 2 (rs142741123, p = 5.49 × 10-8) within MYO1B. FAM120A is a component of oxidative stress-induced survival signals, and the associated variants at the FAM120A locus co-localized with highly significant cis-eQTLs in FAM120AOS in both esophageal mucosa and esophageal muscularis tissue. A trans-ethnic meta-analysis was then performed with the African ESCC study and a Chinese ESCC study in a combined total of 3,699 ESCC-affected individuals and 5,918 control individuals, which identified three genome-wide-significant loci on chromosome 9 at FAM120A (rs12379660, pmeta = 9.36 × 10-10), chromosome 10 at PLCE1 (rs7099485, pmeta = 1.48 × 10-8), and chromosome 22 at CHEK2 (rs1033667, pmeta = 1.47 × 10-9). This indicates the existence of both shared and distinct genetic risk loci for ESCC in African and Asian populations. Our GWAS of ESCC conducted in a population of African ancestry indicates a substantial genetic contribution to ESCC risk in Africa.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Case-Control Studies , East Asian People , Esophageal Neoplasms/genetics , Esophageal Neoplasms/epidemiology , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , African People
4.
Alzheimers Dement ; 19(12): 5765-5772, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37450379

ABSTRACT

BACKGROUND: As a collaboration model between the International HundredK+ Cohorts Consortium (IHCC) and the Davos Alzheimer's Collaborative (DAC), our aim was to develop a trans-ethnic genomic informed risk assessment (GIRA) algorithm for Alzheimer's disease (AD). METHODS: The GIRA model was created to include polygenic risk score calculated from the AD genome-wide association study loci, the apolipoprotein E haplotypes, and non-genetic covariates including age, sex, and the first three principal components of population substructure. RESULTS: We validated the performance of the GIRA model in different populations. The proteomic study in the participant sites identified proteins related to female infertility and autoimmune thyroiditis and associated with the risk scores of AD. CONCLUSIONS: As the initial effort by the IHCC to leverage existing large-scale datasets in a collaborative setting with DAC, we developed a trans-ethnic GIRA for AD with the potential of identifying individuals at high risk of developing AD for future clinical applications.


Subject(s)
Alzheimer Disease , Humans , Female , Alzheimer Disease/genetics , Alzheimer Disease/epidemiology , Genome-Wide Association Study , Proteomics , Genomics , Risk Assessment
5.
Cell Genom ; 3(6): 100332, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37388906

ABSTRACT

Based on evaluations of imputation performed on a genotype dataset consisting of about 11,000 sub-Saharan African (SSA) participants, we show Trans-Omics for Precision Medicine (TOPMed) and the African Genome Resource (AGR) to be currently the best panels for imputing SSA datasets. We report notable differences in the number of single-nucleotide polymorphisms (SNPs) that are imputed by different panels in datasets from East, West, and South Africa. Comparisons with a subset of 95 SSA high-coverage whole-genome sequences (WGSs) show that despite being about 20-fold smaller, the AGR imputed dataset has higher concordance with the WGSs. Moreover, the level of concordance between imputed and WGS datasets was strongly influenced by the extent of Khoe-San ancestry in a genome, highlighting the need for integration of not only geographically but also ancestrally diverse WGS data in reference panels for further improvement in imputation of SSA datasets. Approaches that integrate imputed data from different panels could also lead to better imputation.

8.
Commun Biol ; 6(1): 328, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36973338

ABSTRACT

Cognitive function is an indicator for global physical and mental health, and cognitive impairment has been associated with poorer life outcomes and earlier mortality. A standard cognition test, adapted to a rural-dwelling African community, and the Oxford Cognition Screen-Plus were used to capture cognitive performance as five continuous traits (total cognition score, verbal episodic memory, executive function, language, and visuospatial ability) for 2,246 adults in this population of South Africans. A novel common variant, rs73485231, reached genome-wide significance for association with episodic memory using data for ~14 million markers imputed from the H3Africa genotyping array data. Window-based replication of previously implicated variants and regions of interest support the discovery of African-specific associated variants despite the small population size and low allele frequency. This African genome-wide association study identifies suggestive associations with general cognition and domain-specific cognitive pathways and lays the groundwork for further genomic studies on cognition in Africa.


Subject(s)
Genome-Wide Association Study , Memory, Episodic , South Africa/epidemiology , Cognition , Phenotype
9.
Res Sq ; 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36824767

ABSTRACT

Most hypertension-related genome-wide association studies (GWAS) focus on non-African populations, despite hypertension (a major risk factor for cardiovascular disease) being highly prevalent in Africa. The AWI-Gen study GWAS meta-analysis for blood pressure-related traits (systolic and diastolic blood pressure, pulse pressure, mean-arterial pressure and hypertension) from three sub-Saharan African geographic regions (N=10,775), identified two genome-wide significant signals (p<5E-08): systolic blood pressure near P2RY1 (rs77846204; intergenic variant, p=4.25E-08) and pulse pressure near Linc01256 (rs80141533; intergenic variant, p=4.25E-08). No genome-wide signals were detected for the AWI-Gen GWAS meta-analysis with previous African-ancestry GWASs (UK Biobank (African), Uganda Genome Resource). Suggestive signals (p<5E-06) were observed for all traits, with 29 displaying pleiotropic effects and several replicating known associations. Polygenic risk scores developed from studies on different ancestries had limited transferability, with multi-ancestry models providing better prediction. This study provides insights into the genetics and physiology of blood pressure variation in African populations.

11.
Sci Rep ; 12(1): 18828, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36335192

ABSTRACT

Smoking is a leading risk factor for many of the top ten causes of death worldwide. Of the 1.3 billion smokers globally, 80% live in low- and middle-income countries, where the number of deaths due to tobacco use is expected to double in the next decade according to the World Health Organization. Genetic studies have helped to identify biological pathways for smoking behaviours, but have mostly focussed on individuals of European ancestry or living in either North America or Europe. We performed a genome-wide association study of two smoking behaviour traits in 10,558 men of African ancestry living in five African countries and the UK. Eight independent variants were associated with either smoking initiation or cessation at P-value < 5 × 10-6, four being monomorphic or rare in European populations. Gene prioritisation strategy highlighted five genes, including SEMA6D, previously described as associated with several smoking behaviour traits. These results confirm the importance of analysing underrepresented populations in genetic epidemiology, and the urgent need for larger genomic studies to boost discovery power to better understand smoking behaviours, as well as many other traits.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Male , Humans , Smoking/genetics , Black People/genetics , United Kingdom/epidemiology
12.
Cell ; 185(18): 3286-3289, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055197

ABSTRACT

In this issue of Cell, Bryska-Bishop et al. report the release of the expanded, high-depth sequencing data that characterize the fourth phase of the 1000 Genomes Project. Using extensive comparisons and benchmarks, they demonstrate how this dataset is positioned to serve as a more comprehensive and accurate resource for global genomics.


Subject(s)
Genome, Human , Genomics , Benchmarking , Humans
14.
Hum Mol Genet ; 31(24): 4286-4294, 2022 12 16.
Article in English | MEDLINE | ID: mdl-35925860

ABSTRACT

The complex pathogenesis of rheumatoid arthritis (RA) is not fully understood, with few studies exploring the genomic contribution to RA in patients from Africa. We report a genome-wide association study (GWAS) of South-Eastern Bantu-Speaking South Africans (SEBSSAs) with seropositive RA (n = 531) and population controls (n = 2653). Association testing was performed using PLINK (logistic regression assuming an additive model) with sex, age, smoking and the first three principal components as covariates. The strong association with the Human Leukocyte Antigen (HLA) region, indexed by rs602457 (near HLA-DRB1), was replicated. An additional independent signal in the HLA region represented by the lead SNP rs2523593 (near the HLA-B gene; Conditional P-value = 6.4 × 10-10) was detected. Although none of the non-HLA signals reached genome-wide significance (P < 5 × 10-8), 17 genomic regions showed suggestive association (P < 5 × 10-6). The GWAS replicated two known non-HLA associations with MMEL1 (rs2843401) and ANKRD55 (rs7731626) at a threshold of P < 5 × 10-3 providing, for the first time, evidence for replication of non-HLA signals for RA in sub-Saharan African populations. Meta-analysis with summary statistics from an African-American cohort (CLEAR study) replicated three additional non-HLA signals (rs11571302, rs2558210 and rs2422345 around KRT18P39-NPM1P33, CTLA4-ICOS and AL645568.1, respectively). Analysis based on genomic regions (200 kb windows) further replicated previously reported non-HLA signals around PADI4, CD28 and LIMK1. Although allele frequencies were overall strongly correlated between the SEBSSA and the CLEAR cohort, we observed some differences in effect size estimates for associated loci. The study highlights the need for conducting larger association studies across diverse African populations to inform precision medicine-based approaches for RA in Africa.


Subject(s)
Arthritis, Rheumatoid , Genome-Wide Association Study , HLA Antigens , Humans , Arthritis, Rheumatoid/genetics , Genetic Predisposition to Disease , HLA Antigens/genetics , HLA-DRB1 Chains/genetics , Lim Kinases/genetics , Polymorphism, Single Nucleotide , South Africa
15.
Nat Commun ; 13(1): 2578, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35546142

ABSTRACT

Genetic associations for lipid traits have identified hundreds of variants with clear differences across European, Asian and African studies. Based on a sub-Saharan-African GWAS for lipid traits in the population cross-sectional AWI-Gen cohort (N = 10,603) we report a novel LDL-C association in the GATB region (P-value=1.56 × 10-8). Meta-analysis with four other African cohorts (N = 23,718) provides supporting evidence for the LDL-C association with the GATB/FHIP1A region and identifies a novel triglyceride association signal close to the FHIT gene (P-value =2.66 × 10-8). Our data enable fine-mapping of several well-known lipid-trait loci including LDLR, PMFBP1 and LPA. The transferability of signals detected in two large global studies (GLGC and PAGE) consistently improves with an increase in the size of the African replication cohort. Polygenic risk score analysis shows increased predictive accuracy for LDL-C levels with the narrowing of genetic distance between the discovery dataset and our cohort. Novel discovery is enhanced with the inclusion of African data.


Subject(s)
Genome-Wide Association Study , Africa South of the Sahara , Cholesterol, LDL/genetics , Cross-Sectional Studies , Humans
17.
Nat Med ; 28(2): 243-250, 2022 02.
Article in English | MEDLINE | ID: mdl-35145307

ABSTRACT

Two decades ago, the sequence of the first human genome was published. Since then, advances in genome technologies have resulted in whole-genome sequencing and microarray-based genotyping of millions of human genomes. However, genetic and genomic studies are predominantly based on populations of European ancestry. As a result, the potential benefits of genomic research-including better understanding of disease etiology, early detection and diagnosis, rational drug design and improved clinical care-may elude the many underrepresented populations. Here, we describe factors that have contributed to the imbalance in representation of different populations and, leveraging our experiences in setting up genomic studies in diverse global populations, we propose a roadmap to enhancing inclusion and ensuring equal health benefits of genomics advances. Our Perspective highlights the importance of sincere, concerted global efforts toward genomic equity to ensure the benefits of genomic medicine are accessible to all.


Subject(s)
Genome, Human , Genomics , Genome, Human/genetics , Genomics/methods , Humans , Whole Genome Sequencing
18.
Nat Commun ; 13(1): 855, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35165267

ABSTRACT

Atherosclerosis precedes the onset of clinical manifestations of cardiovascular diseases (CVDs). We used carotid intima-media thickness (cIMT) to investigate genetic susceptibility to atherosclerosis in 7894 unrelated adults (3963 women, 3931 men; 40 to 60 years) resident in four sub-Saharan African countries. cIMT was measured by ultrasound and genotyping was performed on the H3Africa SNP Array. Two new African-specific genome-wide significant loci for mean-max cIMT, SIRPA (p = 4.7E-08), and FBXL17 (p = 2.5E-08), were identified. Sex-stratified analysis revealed associations with one male-specific locus, SNX29 (p = 6.3E-09), and two female-specific loci, LARP6 (p = 2.4E-09) and PROK1 (p = 1.0E-08). We replicate previous cIMT associations with different lead SNPs in linkage disequilibrium with SNPs primarily identified in European populations. Our study find significant enrichment for genes involved in oestrogen response from female-specific signals. The genes identified show biological relevance to atherosclerosis and/or CVDs, sex-differences and transferability of signals from non-African studies.


Subject(s)
Atherosclerosis/genetics , Atherosclerosis/pathology , Carotid Intima-Media Thickness/statistics & numerical data , Genetic Predisposition to Disease/genetics , Adult , Africa South of the Sahara , Autoantigens/genetics , Cardiovascular Diseases/genetics , Female , Gastrointestinal Hormones/genetics , Genome/genetics , Histones/genetics , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Ribonucleoproteins/genetics , Sex Factors , Sorting Nexins/genetics , Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/genetics , SS-B Antigen
19.
Nature ; 600(7890): 675-679, 2021 12.
Article in English | MEDLINE | ID: mdl-34887591

ABSTRACT

Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4-23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice.


Subject(s)
Cardiovascular Diseases , Genome-Wide Association Study , Cardiovascular Diseases/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Humans , Linkage Disequilibrium , Multifactorial Inheritance , Polymorphism, Single Nucleotide/genetics , Population Groups
20.
Front Genet ; 12: 687335, 2021.
Article in English | MEDLINE | ID: mdl-34484290

ABSTRACT

Research in European and Asian populations has reported associations between single nucleotide polymorphisms (SNPs) in CYP17A1 and SERPINA6/A1 and circulating glucocorticoid concentrations, and some key cardiometabolic risk factors. This study aimed to investigate these associations in black South African adults, who are disproportionally affected by the metabolic syndrome and its related cardiometabolic risk factors. The dataset included black South African adults (n = 4,431; 56.7% women) from the AWI-Gen study, genotyped on the H3A genotyping array and imputed using the African reference panel at the Sanger imputation service. From the imputed data, 31 CYP17A1 SNPs and 550 SERPINA6/A1 SNPs were extracted. The metabolic syndrome and its components were defined using the 2009 harmonized guidelines. Serum glucocorticoid concentrations were measured in a subset of 304 men and 573 women, using a liquid chromatography-mass spectrometry method. Genetic associations were detected using PLINK. Bonferroni correction was used to control for multiple testing. A SNP at SERPINA6/A1, rs17090691 (effect allele G), was associated with higher diastolic blood pressure (BP) in all adults combined (p = 9.47 × 10-6). Sex-stratified analyses demonstrated an association between rs1051052 (effect allele G), another SERPINA6/A1 SNP, and higher high-density lipoprotein (HDL) cholesterol concentrations in women (p = 1.23 × 10-5). No association was observed between these variants and glucocorticoids or between any of the CYP17A1 SNPs and metabolic outcomes after adjusting for multiple testing. Furthermore, there were no associations between any of the SNPs tested and the metabolic syndrome. This study reports novel genetic associations between two SNPs at SERPINA6/A1 and key cardiometabolic risk factors in black South Africans. Future replication and functional studies in larger populations are required to confirm the role of the identified SNPs in the metabolic syndrome and assess if these associations are mediated by circulating glucocorticoids.

SELECTION OF CITATIONS
SEARCH DETAIL
...