Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 6(1): 1093, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891254

ABSTRACT

Deficiency in human mature frataxin (hFXN-M) protein is responsible for the devastating neurodegenerative and cardiodegenerative disease of Friedreich's ataxia (FRDA). It results primarily through epigenetic silencing of the FXN gene by GAA triplet repeats on intron 1 of both alleles. GAA repeat lengths are most commonly between 600 and 1200 but can reach 1700. A subset of approximately 3% of FRDA patients have GAA repeats on one allele and a mutation on the other. FRDA patients die most commonly in their 30s from heart disease. Therefore, increasing expression of heart hFXN-M using gene therapy offers a way to prevent early mortality in FRDA. We used rhesus macaque monkeys to test the pharmacology of an adeno-associated virus (AAV)hu68.CB7.hFXN therapy. The advantage of using non-human primates for hFXN-M gene therapy studies is that hFXN-M and monkey FXN-M (mFXN-M) are 98.5% identical, which limits potential immunologic side-effects. However, this presented a formidable bioanalytical challenge in quantification of proteins with almost identical sequences. This could be overcome by the development of a species-specific quantitative mass spectrometry-based method, which has revealed for the first time, robust transgene-specific human protein expression in monkey heart tissue. The dose response is non-linear resulting in a ten-fold increase in monkey heart hFXN-M protein expression with only a three-fold increase in dose of the vector.


Subject(s)
Friedreich Ataxia , Iron-Binding Proteins , Animals , Humans , Macaca mulatta , Iron-Binding Proteins/genetics , Heart , Friedreich Ataxia/genetics , Friedreich Ataxia/therapy , Friedreich Ataxia/metabolism , Genetic Therapy , Frataxin
2.
Hum Gene Ther ; 33(9-10): 499-517, 2022 05.
Article in English | MEDLINE | ID: mdl-35333110

ABSTRACT

Krabbe disease is a lysosomal storage disease caused by mutations in the gene that encodes galactosylceramidase, in which galactosylsphingosine (psychosine) accumulation drives demyelination in the central and peripheral nervous systems, ultimately progressing to death in early childhood. Gene therapy, alone or in combination with transplant, has been developed for almost two decades in mouse models, with increasing therapeutic benefit paralleling the improvement of next-generation adeno-associated virus (AAV) vectors. This effort has recently shown remarkable efficacy in the canine model of the disease by two different groups that used either systemic or cerebrospinal fluid (CSF) administration of AAVrh10 or AAV9. Building on our experience developing CSF-delivered, AAV-based drug products for a variety of neurodegenerative disorders, we conducted efficacy, pharmacology, and safety studies of AAVhu68 delivered to the CSF in two relevant natural Krabbe animal models, and in nonhuman primates. In newborn Twitcher mice, the highest dose (1 × 1011 genome copies [GC]) of AAVhu68.hGALC injected into the lateral ventricle led to a median survival of 130 days compared to 40.5 days in vehicle-treated mice. When this dose was administered intravenously, the median survival was 49 days. A single intracisterna magna injection of AAVhu68.cGALC at 3 × 1013 GC into presymptomatic Krabbe dogs increased survival for up to 85 weeks compared to 12 weeks in controls. It prevented psychosine accumulation in the CSF, preserved peripheral nerve myelination, ambulation, and decreased brain neuroinflammation and demyelination, although some regions remained abnormal. In a Good Laboratory Practice-compliant toxicology study, we administered the clinical candidate into the cisterna magna of 18 juvenile rhesus macaques at 3 doses that displayed efficacy in mice. We observed no dose-limiting toxicity and sporadic minimal degeneration of dorsal root ganglia (DRG) neurons. Our studies demonstrate the efficacy, scalability, and safety of a single cisterna magna AAVhu68 administration to treat Krabbe disease. ClinicalTrials.Gov ID: NCT04771416.


Subject(s)
Leukodystrophy, Globoid Cell , Animals , Child, Preschool , Dependovirus/genetics , Disease Models, Animal , Dogs , Genetic Therapy , Humans , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/therapy , Macaca mulatta/genetics , Mice , Psychosine
3.
Hum Gene Ther ; 31(15-16): 808-818, 2020 08.
Article in English | MEDLINE | ID: mdl-32845779

ABSTRACT

The administration of adeno-associated virus (AAV) vectors to nonhuman primates (NHP) via the blood or cerebrospinal fluid (CSF) can lead to dorsal root ganglion (DRG) pathology. The pathology is minimal to moderate in most cases; clinically silent in affected animals; and characterized by mononuclear cell infiltrates, neuronal degeneration, and secondary axonopathy of central and peripheral axons on histopathological analysis. We aggregated data from 33 nonclinical studies in 256 NHP and performed a meta-analysis of the severity of DRG pathology to compare different routes of administration, dose, time course, study conduct, age of the animals, sex, capsid, promoter, capsid purification method, and transgene. DRG pathology was observed in 83% of NHP that were administered AAV through the CSF, and 32% of NHP that received an intravenous (IV) injection. We show that dose and age at injection significantly affected the severity whereas sex had no impact. DRG pathology was minimal at acute time points (i.e., <14 days), similar from one to 5 months post-injection, and was less severe after 6 months. Vector purification method had no impact, and all capsids and promoters that we tested resulted in some DRG pathology. The data presented here from five different capsids, five different promoters, and 20 different transgenes suggest that DRG pathology is almost universal after AAV gene therapy in nonclinical studies using NHP. None of the animals receiving a therapeutic transgene displayed any clinical signs. Incorporation of sensitive techniques such as nerve-conduction velocity testing can show alterations in a minority of animals that correlate with the severity of peripheral nerve axonopathy. Monitoring sensory neuropathies in human central nervous system and high-dose IV clinical studies seems prudent to determine the functional consequences of DRG pathology.


Subject(s)
Dependovirus/genetics , Ganglia, Spinal/pathology , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Neural Conduction , Animals , Female , Ganglia, Spinal/metabolism , Macaca fascicularis , Macaca mulatta , Male , Transduction, Genetic
4.
Int J Mol Sci ; 19(9)2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30227600

ABSTRACT

Humans and nonhuman primates (NHP) are similar in behavior and in physiology, specifically the structure, function, and complexity of the immune system. Thus, NHP models are desirable for pathophysiology and pharmacology/toxicology studies. Furthermore, NHP-derived induced pluripotent stem cells (iPSCs) may enable transformative developmental, translational, or evolutionary studies in a field of inquiry currently hampered by the limited availability of research specimens. NHP-iPSCs may address specific questions that can be studied back and forth between in vitro cellular assays and in vivo experimentations, an investigational process that in most cases cannot be performed on humans because of safety and ethical issues. The use of NHP model systems and cell specific in vitro models is evolving with iPSC-based three-dimensional (3D) cell culture systems and organoids, which may offer reliable in vitro models and reduce the number of animals used in experimental research. IPSCs have the potential to give rise to defined cell types of any organ of the body. However, standards for deriving defined and validated NHP iPSCs are missing. Standards for deriving high-quality iPSC cell lines promote rigorous and replicable scientific research and likewise, validated cell lines reduce variability and discrepancies in results between laboratories. We have derived and validated NHP iPSC lines by confirming their pluripotency and propensity to differentiate into all three germ layers (ectoderm, mesoderm, and endoderm) according to standards and measurable limits for a set of marker genes. The iPSC lines were characterized for their potential to generate neural stem cells and to differentiate into dopaminergic neurons. These iPSC lines are available to the scientific community. NHP-iPSCs fulfill a unique niche in comparative genomics to understand gene regulatory principles underlying emergence of human traits, in infectious disease pathogenesis, in vaccine development, and in immunological barriers in regenerative medicine.


Subject(s)
Dopaminergic Neurons/cytology , Induced Pluripotent Stem Cells/cytology , Neural Stem Cells/cytology , Neurogenesis , Animals , Callithrix , Cell Culture Techniques , Cell Lineage , Cells, Cultured , Cellular Reprogramming Techniques , Dopaminergic Neurons/metabolism , Induced Pluripotent Stem Cells/metabolism , Karyotype , Neural Stem Cells/metabolism , Skin/cytology
5.
PLoS One ; 13(8): e0202770, 2018.
Article in English | MEDLINE | ID: mdl-30138454

ABSTRACT

Parkinson's disease is a progressive neurodegenerative disease increasingly affecting our aging population. Remarkable advances have been made in developing novel therapies to control symptoms, halt or cure the disease, ranging from physiotherapy and small molecules to cell and gene therapy. This progress was enabled by the existence of reliable animal models. The nonhuman primate model of Parkinson's disease emulates the cardinal symptoms of the disease, including tremor, rigidity, bradykinesia, postural instability, freezing and cognitive impairment. However, this model is established through the specific loss of midbrain dopaminergic neurons, while our current knowledge reflects the reality of Parkinson's disease as a multisystem disease. Parkinson's disease involves both motor and non-motor symptoms, such as sleep disturbance, olfaction, gastrointestinal dysfunctions, depression and cognitive deficits. Some of the non-motor symptoms emerge earlier at the prodromal phase and worsen with disease progression, yet in basic and translational studies, they are rarely considered as endpoints. In this study, we set to characterize an ensemble of less described motor and non-motor dysfunctions in the marmoset MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) model. We provide evidence that this animal model expresses postural head tremor and a progressive worsening of fine motor skills, movement coordination and cognitive abilities over a 6-month period. We report for the first time a non-invasive approach showing detailed analysis of daytime and nighttime sleep and circadian rhythm disturbance remarkably similar to Parkinson's disease patients. This study describes the incidence of tremors, motor and non-motor dysfunctions in a preclinical model and highlights the need for their consideration in translating effective new therapeutic approaches for Parkinson's disease.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Parkinson Disease/pathology , Parkinson Disease/psychology , Tremor/etiology , Age of Onset , Animals , Callithrix , Circadian Rhythm , Disease Models, Animal , Disease Progression , Humans , Male , Motor Activity , Parkinson Disease/etiology , Parkinson Disease/physiopathology
6.
Stem Cells Transl Med ; 6(3): 877-885, 2017 03.
Article in English | MEDLINE | ID: mdl-28297573

ABSTRACT

Optimal stem cell delivery procedures are critical to the success of the cell therapy approach. Variables such as flow rate, suspension solution, needle diameter, cell density, and tissue mechanics affect tissue penetration, backflow along the needle, and the dispersion and survival of injected cells during delivery. Most cell transplantation centers engaged in human clinical trials use custom-designed cannula needles, syringes, or catheters, sometimes precluding the use of magnetic resonance imaging (MRI)-guided delivery to target tissue. As a result, stem cell therapies may be hampered because more than 80% of grafted cells do not survive the delivery-for example, to the heart, liver/pancreas, and brain-which translates to poor patient outcomes. We developed a minimally invasive interventional MRI (iMRI) approach for intraoperatively imaging neural stem cell (NSC) delivery procedures. We used NSCs prelabeled with a contrast agent and real-time magnetic resonance imaging to guide the injection cannula to the target and to track the delivery of the cells into the putamen of baboons. We provide evidence that cell injection into the brain parenchyma follows a novel pulsatile mode of cellular discharge from the delivery catheter despite a constant infusion flow rate. The rate of cell infusion significantly affects the dispersion and viability of grafted cells. We report on our investigational use of a frameless navigation system for image-guided NSC transplantation using a straight cannula. Through submillimeter accuracy and real-time imaging, iMRI approaches may improve the safety and efficacy of neural cell transplantation therapies. Stem Cells Translational Medicine 2017;6:877-885.


Subject(s)
Basal Ganglia/cytology , Magnetic Resonance Imaging , Neural Stem Cells/transplantation , Stem Cell Transplantation/methods , Animals , Cell Survival , Computer Systems , Dextrans/chemistry , Humans , Magnetite Nanoparticles/chemistry , Neural Stem Cells/cytology , Papio , Phantoms, Imaging
7.
Stroke ; 47(4): 1109-16, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26956259

ABSTRACT

BACKGROUND AND PURPOSE: Ischemic stroke is the leading cause of upper extremity motor impairments. Although several well-characterized experimental stroke models exist, modeling of upper extremity motor impairments, which are unique to primates, is not well established. Cortical representation of dexterous movements in nonhuman primates is functionally and topographically similar to that in humans. In this study, we characterize the African green monkey model of focal ischemia reperfusion with a defined syndrome, impaired dexterous movements. METHODS: Cerebral ischemia was induced by transient occlusion of the M3 segment of the left middle cerebral artery. Motor and cognitive functions after stroke were evaluated using the object retrieval task with barrier-detour. Postmortem magnetic resonance imaging and histopathology were performed to map and characterize the infarct. RESULTS: The middle cerebral artery occlusion consistently produced a necrotic infarct localized in the sensorimotor cortex in the middle cerebral artery territory. The infarction was reproducible and resulted in significant loss of fine motor function characterized by impaired dexterity. No significant cognitive impairment was detected. Magnetic resonance imaging and histopathology demonstrated consistent and significant loss of tissue on the left parietal cortex by the central sulcus covering the sensorimotor area. The results suggest that this species has less collateralization, which closely resembles humans. CONCLUSIONS: The reported nonhuman primate model produces a defined and reproducible syndrome relevant to our understanding of ischemic stroke, cortical representation, and sensorimotor integration controlling dexterous movements. This model will be useful in basic and translational research addressing loss of arm function and dexterity.


Subject(s)
Arm/physiopathology , Brain Ischemia/physiopathology , Cognition/physiology , Fingers/physiopathology , Psychomotor Performance/physiology , Stroke/physiopathology , Animals , Chlorocebus aethiops , Disease Models, Animal , Infarction, Middle Cerebral Artery/physiopathology , Motor Skills/physiology , Sensorimotor Cortex/physiopathology
8.
Brain Circ ; 2(3): 141-145, 2016.
Article in English | MEDLINE | ID: mdl-30276291

ABSTRACT

Nonhuman primates (NHPs) are alike humans in size, behavior, physiology, biochemistry, and immunology. Given close similarities to humans, the NHP model offers exceptional opportunities to understand the biological mechanisms and translational applications with direct relevance to human conditions. Here, we evaluate the opportunities and limitations of NHPs as animal models for translational regenerative medicine. NHP models of human disease propose exceptional opportunities to advance stem cell-based therapy by addressing pertinent translational concerns related to this research. Nonetheless, the value of these primates must be carefully assessed, taking into account the expense of specialized equipment and requirement of highly specialized staff. Well-designed initial fundamental studies in small animal models are essential before translating research into NHP models and eventually into human trials. In addition, we suggest that applying a directed and collaborative approach, as seen in the evolution of stroke NHP models, will greatly benefit the translation of stem cell therapy in other NHP disease models.

9.
Front Cell Neurosci ; 8: 315, 2014.
Article in English | MEDLINE | ID: mdl-25339866

ABSTRACT

Neural stem cell-based treatment holds a new therapeutic opportunity for neurodegenerative disorders. Here, we investigated the effect of methylene blue on proliferation and differentiation of rat neural progenitor cells (NPCs) both in vitro and in vivo. We found that methylene blue inhibited proliferation and promoted quiescence of NPCs in vitro without affecting committed neuronal differentiation. Consistently, intracerebroventricular infusion of methylene blue significantly inhibited NPC proliferation at the subventricular zone (SVZ). Methylene blue inhibited mTOR signaling along with down-regulation of cyclins in NPCs in vitro and in vivo. In summary, our study indicates that methylene blue may delay NPC senescence through enhancing NPCs quiescence.

SELECTION OF CITATIONS
SEARCH DETAIL
...