Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Eur J Med Genet ; 69: 104944, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679370

ABSTRACT

Here we report the case of a young boy with developmental delay, thin sparse hair, early closure of the anterior fontanel, bilateral choanal atresia, brachyturicephaly; and dysmorphic features closely resembling those seen in trichorhinophalangeal syndrome (TRPS). These features include sparse hair, sparse lateral eyebrows, a bulbous pear shaped nose, a long philtrum, thin lips, small/hypoplastic nails, pes planovalgus; bilateral cone-shaped epiphyses at the proximal 5th phalanx, slender long bones, coxa valga, mild scoliosis, and delayed bone age. Given that TRPS had been excluded by a thorough genetic analysis, whole exome sequencing was performed and a heterozygous likely pathogenic variant was identified in the FBXO11 gene (NM_001190274.2: c.1781A > G; p. His594Arg), confirming the diagnosis of the newly individualized IDDFBA syndrome: Intellectual Developmental Disorder, dysmorphic Facies, and Behavioral Abnormalities (OMIM# 618,089). Our findings further delineate the clinical spectrum linked to FBXO11 and highlight the importance of investigating further cases with mutations in this gene to establish a potential genotype-phenotype correlation.


Subject(s)
F-Box Proteins , Phenotype , Humans , Male , F-Box Proteins/genetics , Intellectual Disability/genetics , Intellectual Disability/pathology , Langer-Giedion Syndrome/genetics , Langer-Giedion Syndrome/pathology , Nose/abnormalities , Nose/pathology , Fingers/abnormalities , Fingers/pathology , Child , Choanal Atresia/genetics , Choanal Atresia/pathology , Mutation , Hair Diseases , Protein-Arginine N-Methyltransferases
2.
Clin Genet ; 105(2): 202-208, 2024 02.
Article in English | MEDLINE | ID: mdl-37830462

ABSTRACT

SAMD9, a ubiquitously expressed protein, is involved in several mechanisms, including endosome fusion, growth suppression and modulation of innate immune responses to stress and viral infections. While biallelic mutations in SAMD9 are linked to normophosphatemic familial tumoral calcinosis, heterozygous gain-of-function mutations in the same gene are responsible for MIRAGE, a multisystemic syndrome characterized by myelodysplasia, infection, restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy. A two-and-a-half-year-old girl, from a consanguineous Lebanese family, was included in this study. She presents with pre- and post-natal growth retardation, recurrent fevers, persistent diarrhea, elevated CRP and intermittent hypoglycemia. Whole genome sequencing revealed a homozygous frameshift variant in SAMD9 (NM_017654.4: c.480_481del; p.Val162Ilefs*5) in the proband. Sanger sequencing confirms its segregation with the disease in the family, and immunoblotting showed that the detected variant abolishes SAMD9 expression in the patient. Our findings expand the clinical spectrum linked to SAMD9 and highlight the importance of investigating further cases with mutations in this gene, as this will pave the way towards the understanding of the pathways driving these diseases.


Subject(s)
Frameshift Mutation , Myelodysplastic Syndromes , Female , Humans , Child, Preschool , Mutation , Myelodysplastic Syndromes/genetics , Heterozygote , Homozygote , Intracellular Signaling Peptides and Proteins/genetics
3.
Oncol Rev ; 17: 10603, 2023.
Article in English | MEDLINE | ID: mdl-38025894

ABSTRACT

Bladder cancer (BC) has been associated with genetic susceptibility. Single peptide polymorphisms (SNPs) can modulate BC susceptibility. A literature search was performed covering the period between January 2000 and October 2020. Overall, 334 articles were selected, reporting 455 SNPs located in 244 genes. The selected 455 SNPs were further investigated. All SNPs that were associated with smoking and environmental exposure were excluded from this study. A total of 197 genes and 343 SNPs were found to be associated with BC, among which 177 genes and 291 SNPs had congruent results across all available studies. These genes and SNPs were classified into eight different categories according to their function.

4.
Genes (Basel) ; 14(8)2023 07 28.
Article in English | MEDLINE | ID: mdl-37628598

ABSTRACT

Intellectual disability (ID) is a prevalent neurodevelopmental disorder characterized by limitations in intellectual functioning and adaptive behavior. While the causes of ID are still largely unknown, it is believed to result from a combination of environmental exposures and genetic abnormalities. Recent advancements in genomic studies and clinical genetic testing have identified numerous genes associated with neurodevelopmental disorders (NDDs), including ID. One such gene is CHAMP1, which plays a role in chromosome alignment and has been linked to a specific type of NDD called CHAMP1 disease. This report presents the case of a 21-year-old Lebanese female patient with a de novo mutation in CHAMP1. In addition to ID and NDD, the patient exhibited various clinical features such as impaired language, dysmorphic features, macrocephaly, thoracic hyperkyphosis, decreased pain sensation, and metabolic syndrome. These findings expand the understanding of the clinical spectrum associated with CHAMP1 mutations and highlight the importance of comprehensive follow-up for improved prognosis. Overall, this case contributes to the knowledge of CHAMP1-related NDDs by describing additional clinical features associated with a CHAMP1 mutation. The findings underscore the need for accurate diagnosis, thorough follow-up, and personalized care for individuals with CHAMP1 mutations to optimize their prognosis.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Humans , Female , Young Adult , Adult , Follow-Up Studies , Intellectual Disability/genetics , Adaptation, Psychological , Cognition , Chromosomal Proteins, Non-Histone , Phosphoproteins
5.
Mol Syndromol ; 14(3): 219-224, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37323196

ABSTRACT

Introduction: Overgrowth syndromes are a heterogeneous group of genetic disorders characterized by excessive growth, often accompanied by additional clinical features, such as facial dysmorphism, hormonal imbalances, cognitive impairment, and increased risk for neoplasia. Moreno-Nishimura-Schmidt (M-N-S) overgrowth syndrome is a very rare overgrowth syndrome characterized by severe pre- and postnatal overgrowth, dysmorphic facial features, kyphoscoliosis, large hands and feet, inguinal hernia, and distinctive skeletal features. The clinical and radiological features of the disorder have been well delineated, yet its molecular pathogenesis remains unclear. Case Presentation: We report on a Lebanese boy with M-N-S syndrome, whose clinical manifestations were compared with those of previously reported 5 affected individuals. Whole-exome sequencing combined with comparative genome hybridization analysis failed to delineate the molecular basis of the phenotype. However, epigenetic studies revealed a different methylation status of several CpG sites between him and healthy controls, with methyltransferase activity showing the most significant enrichment. Conclusion: An additional case of M-N-S syndrome recapitulated the clinical and radiological manifestations described in the previous reports. The data in the epigenetic studies implicated that abnormal methylations might play an essential role in development of the disease phenotype. However, additional studies in a clinically homogeneous cohort of patients are crucial to confirm this hypothesis.

6.
Int J Gynaecol Obstet ; 162(3): 1027-1032, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37185951

ABSTRACT

OBJECTIVE: To assess the molecular profile of borderline ovarian tumors (BOT) in the Lebanese population by whole-exome sequencing and to correlate the results with the patients' clinical profiles. METHODS: We included in this retrospective study 33 tumors belonging to 32 Lebanese women presenting with BOT, diagnosed at Hôtel Dieu de France. A total of 234 genes involved in different germinal and somatic types of cancer were analyzed using next-generation sequencing. RESULTS: Molecular analysis of these tumors allowed us to detect mutations in genes involved in the mitogen-activated protein kinase cascade in 57.58% of BOT and to identify variants affecting the DNA repair mechanism in 63.89% of samples. Furthermore, our initial analysis revealed an association between defects in DNA double-strand break repair and the occurrence of mucinous BOT, in 75% of the cases. CONCLUSION: This study reports the molecular profiles of BOT in the Lebanese population and compares them to the literature. This is the first study associating the DNA repair pathway to BOT.


Subject(s)
Genetic Profile , Ovarian Neoplasms , Humans , Female , Exome Sequencing , Retrospective Studies , Ovarian Neoplasms/genetics , France
7.
Pediatr Dermatol ; 40(5): 960-961, 2023.
Article in English | MEDLINE | ID: mdl-37029088

ABSTRACT

To date, more than 15 genes have been linked to syndromic and non-syndromic hypotrichosis, among which the LSS gene encoding lanosterol synthase was recently linked to autosomal recessive isolated hypotrichosis. Here we report the case of a 6-year-old girl born to non-consanguineous Iraqi parents and presenting with sparse lanugo hair since birth on the scalp, eyelashes, and eyebrows. Whole exome sequencing followed by Sanger sequencing allowed the detection of two novel compound heterozygous variants in LSS (p.Ile323Thr and p.Gly600Val). Reporting and investigating further cases with LSS variants might help establishing a better genotype-phenotype correlation.


Subject(s)
Hypotrichosis , Child , Female , Humans , Alopecia/genetics , Eyebrows , Hair , Hypotrichosis/diagnosis , Hypotrichosis/genetics , Pedigree
8.
Clin Immunol ; 251: 109326, 2023 06.
Article in English | MEDLINE | ID: mdl-37030525

ABSTRACT

Combined immunodeficiency diseases (CID) represent the most severe forms of inborn errors of immunity. Defective T cell development and/or function, leading to an impairment in adaptive immunity are responsible for these diseases. The DNA polymerase δ complex is important for genome duplication and maintenance and consists of the catalytic subunit POLD1, and the accessory subunits POLD2 and POLD3 which stabilizes the complex. Mutations in POLD1 and POLD2 have been recently shown to be associated with a syndromic CID characterized by T cell lymphopenia with or without intellectual deficiency and sensorineural hearing loss. Here we report a homozygous POLD3 variant (NM_006591.3; p.Ile10Thr) in a Lebanese patient, the product of a consanguineous family, presenting with a syndromic severe combined immunodeficiency (SCID) with neurodevelopmental delay and hearing loss. The homozygous POLD3Ile10Thr variant abolishes POLD3 as well as POLD1 and POLD2 expression. Our findings implicate POLD3 deficiency as a novel cause of syndromic SCID.


Subject(s)
Hearing Loss , Severe Combined Immunodeficiency , Humans , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , Severe Combined Immunodeficiency/complications , Severe Combined Immunodeficiency/genetics , Mutation , Homozygote , Pedigree
9.
Genes (Basel) ; 14(3)2023 02 27.
Article in English | MEDLINE | ID: mdl-36980870

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is a complex developmental disability that impairs the social communication and interaction of affected individuals and leads to restricted or repetitive behaviors or interests. ASD is genetically heterogeneous, with inheritable and de novo genetic variants in more than hundreds of genes contributing to the disease. However, these account for only around 20% of cases, while the molecular basis of the majority of cases remains unelucidated as of yet. MATERIAL AND METHODS: Two unrelated Lebanese patients, a 7-year-old boy (patient A) and a 4-year-old boy (patient B), presenting with ASD were included in this study. Whole-exome sequencing (WES) was carried out for these patients to identify the molecular cause of their diseases. RESULTS: WES analysis revealed hemizygous variants in PCDH19 (NM_001184880.1) as being the candidate causative variants: p.Arg787Leu was detected in patient A and p.Asp1024Asn in patient B. PCDH19, located on chromosome X, encodes a membrane glycoprotein belonging to the protocadherin family. Heterozygous PCDH19 variants have been linked to epilepsy in females with mental retardation (EFMR), while mosaic PCDH19 mutations in males are responsible for treatment-resistant epilepsy presenting similarly to EFMR, with some reported cases of comorbid intellectual disability and autism. Interestingly, a hemizygous PCDH19 variant affecting the same amino acid that is altered in patient A was previously reported in a male patient with ASD. CONCLUSION: Here, we report hemizygous PCDH19 variants in two males with autism without epilepsy. Reporting further PCDH19 variants in male patients with ASD is important to assess the possible involvement of this gene in autism.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Protocadherins , Child , Child, Preschool , Female , Humans , Male , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Epilepsy/genetics , Intellectual Disability/genetics , Protocadherins/genetics
10.
Genes (Basel) ; 14(2)2023 02 15.
Article in English | MEDLINE | ID: mdl-36833424

ABSTRACT

Spondyloocular syndrome (SOS, OMIM # 605822) is a rare genetic disorder characterized by osseous and ocular manifestations, including generalized osteoporosis, multiple long bones fractures, platyspondyly, dense cataracts and retinal detachment, and dysmorphic facial features, with or without short stature, cardiopathy, hearing impairment, and intellectual disability. Biallelic mutations in the XYLT2 gene (OMIM * 608125), encoding the xylosyltransferase II, were shown to be responsible for this disease. To date, 22 cases with SOS have been described, with varying clinical presentations and a yet-to-be-established genotypic-phenotypic correlation. Two patients from a consanguineous Lebanese family that presented with SOS were included in this study. Whole exome sequencing revealed a novel homozygous nonsense mutation in XYLT2 (p.Tyr414*) in these patients. We review all previously reported cases with SOS, describe the second nonsense mutation in XYLT2, and contribute to a better delineation of the phenotypic spectrum of the disease.


Subject(s)
Osteochondrodysplasias , Osteoporosis , Humans , Codon, Nonsense , Phenotype , Osteochondrodysplasias/genetics , Homozygote , Osteoporosis/genetics , Vision Disorders
11.
Am J Med Genet A ; 191(4): 923-929, 2023 04.
Article in English | MEDLINE | ID: mdl-36565049

ABSTRACT

Split-hand/foot malformation (SHFM) with long-bone deficiency (SHFLD) is a rare condition characterized by SHFM associated with long-bone malformation usually involving the tibia. It includes three different types; SHFLD1 (MIM % 119,100), SHFLD2 (MIM % 610,685) and SHFLD3 (MIM # 612576). The latter was shown to be the most commonly reported with a duplication in the 17p13.1p13.3 locus that was narrowed down to the BHLHA9 gene. Here, we report a consanguineous Lebanese family with three members presenting with limb abnormalities including tibial hemimelia. One of these patients presented with additional bowing fibula and another with bilateral split hand. CGH array analysis followed by RQ-PCR allowed us to detect the first homozygous duplication on the short arm of chromosome 17p13.3 including the BHLHA9 gene and involved in SHFLD3. Interestingly, one patient with the homozygous duplicated region, carrying thus four BHLHA9 copies presented with long bone deficiency but no SHFM. The incomplete penetrance and the variable expressivity of the disease in this family as well as the presence of the BHLHA9 homozygous duplication rendered genetic counseling extremely challenging and preimplantation genetic diagnosis almost impossible.


Subject(s)
Hand Deformities, Congenital , Limb Deformities, Congenital , Humans , Basic Helix-Loop-Helix Transcription Factors/genetics , Consanguinity , Genetic Counseling , Hand Deformities, Congenital/genetics , Limb Deformities, Congenital/genetics , Pedigree
12.
Nephron ; 147(3-4): 229-233, 2023.
Article in English | MEDLINE | ID: mdl-36215968

ABSTRACT

INTRODUCTION: Nephronophthisis (NPHP) is a group of autosomal recessive renal diseases characterized by a reduced ability of the kidneys to concentrate solutes, chronic tubulointerstitial nephritis, and cystic kidney disease. It represents the most common genetic cause of childhood renal failure. To date, around 20 different genes, encoding primary cilia proteins, have been linked to NPHP. These contribute to one-third of cases with NPHP while the majority of patients remain molecularly undiagnosed. MATERIALS AND METHODS: Whole exome sequencing (WES) was carried out on a 2-year-old Lebanese boy with infantile NPHP characterized by multicystic kidney dysplasia, kidney insufficiency, and enlarged kidneys in addition to chronic anemia. The candidate variant, detected by WES, was then tested in the patient and his parents by Sanger sequencing. Copy number variation (CNV) analysis was subsequently performed in the proband. RESULTS: Our studies enabled the detection of a heterozygous de novo variant in NEK8 (NM_178170: p.Arg45Trp) in the proband. CNV analysis excluded the presence of big deletions or insertions in this gene. CONCLUSION: Here we report a de novo heterozygous variant in the NEK8 gene in infantile NPHP. This variant was previously detected at a de novo state in a patient presenting with the same clinical features as the proband. This suggests that autosomal dominant forms of NEK8-linked nephropathies may exist. Reporting further patients with NEK8 mutations is essential to confirm these findings and assess whether dominant forms of the disease are restricted to a specific mutational spot or are linked to variants scattered throughout the NEK8 gene.


Subject(s)
Polycystic Kidney Diseases , Protein Kinases , Male , Humans , Child, Preschool , Protein Kinases/genetics , Protein Kinases/metabolism , NIMA-Related Kinases/genetics , DNA Copy Number Variations , Polycystic Kidney Diseases/genetics , Mutation
13.
Hepatology ; 77(2): 501-511, 2023 02 01.
Article in English | MEDLINE | ID: mdl-35989577

ABSTRACT

BACKGROUND AND AIMS: Porto-sinusoidal vascular disorder (PSVD) is a group of liver vascular diseases featuring lesions encompassing the portal venules and sinusoids unaccompanied by cirrhosis, irrespective of the presence/absence of portal hypertension. It can occur secondary to coagulation disorders or insult by toxic agents. However, the cause of PSVD remains unknown in most cases. Hereditary cases of PSVD are exceptionally rare, but they are of particular interest and may unveil genetic alterations and molecular mechanisms associated with the disease. APPROACH AND RESULTS: We performed genome sequencing of four patients and two healthy individuals of a large multigenerational Lebanese family with PSVD and identified a heterozygous deleterious variant (c.547C>T, p.R183W) of FCH and double SH3 domains 1 ( FCHSD1 ), an uncharacterized gene, in patients. This variant segregated with the disease, and its pattern of inheritance was suggestive of autosomal dominant with variable expressivity. RNA structural modelling of human FCHSD1 suggests that the C-to-T substitution at position 547, corresponding to FCHSD1R183W , may increase both messenger RNA (mRNA) and protein stability and its interaction with MTOR-associated protein, LST8 homolog, a key protein of the mechanistic target of rapamycin (mTOR pathway). These predictions were substantiated by biochemical analyses, which showed that FCHSD1R183W induced high FCHSD1 mRNA stability, overexpression of FCHSD1 protein, and an increase in mTORC1 activation. This human FCHSD1 variant was introduced into mice through CRISPR/Cas9 genome editing. Nine out of the 15 mice carrying the human FCHSD1R183W variant mimicked the phenotype of human PSVD, including splenomegaly and enlarged portal vein. CONCLUSIONS: Aberrant FCHSD1 structure and function leads to mTOR pathway overactivation and may cause PSVD.


Subject(s)
Hypertension, Portal , Vascular Diseases , Humans , Mice , Animals , Genetic Predisposition to Disease , Extended Family , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Hypertension, Portal/metabolism , Genomics
14.
BMC Med Genomics ; 15(1): 217, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36253817

ABSTRACT

BACKGROUND: Bladder cancer (BC) is the 10th most frequent tumor worldwide. Evidence shows an association between elevated risk of BC and various single nucleotide polymorphisms (SNP). BC incidence was the highest in Lebanon according to Globocan 2018 report, but little is known about the genetic susceptibility of Lebanese people to this disease. We aim to evaluate whether this prominent incidence of BC in Lebanon is attributable to known coding genetic variants. METHODS: A case-control study was conducted at Hotel-Dieu de France Hospital, Beirut. A cohort of 51 Lebanese patients with BC were recruited between 2017 and 2020. Whole Exome Sequencing (WES) was performed on peripheral blood samples to detect coding genetic variants in the patients. An in-house database including WES data from 472 Lebanese individuals served as control. Literature review of the genetic predisposition to BC was conducted to establish a database of variants known to influence the risk of BC. In-common SNPs were identified between cases and the aforecited database, and their allelic frequencies was quantified in the former and in controls. Comparative analysis of the allelic frequencies of each in-common SNP was carried out between cases, controls, and the genome aggregation database (gnomAD). Analysis was performed by applying the binomial law and setting the p-value to 10- 10. RESULTS: 484 polymorphisms associated with BC were extracted from the literature review ;151 of which were in-common with the 206 939 variations detected by WES in our cases. Statistically significant differences (p-value < 10- 10) in allelic frequencies was seen in 11 of the 151 in-common SNPs, but none of which corresponds with a higher BC risk. Moreover, rs4986782 variant in the NAT1 gene is not associated with BC in the Lebanese population. `. CONCLUSION: This is the first next-generation sequencing (NGS)- based study investigating BC risk in a Lebanese cohort of 51 patients. The majority of known exonic variants in the literature were not associated with BC in our patients. Further studies with larger sample sizes are warranted to explore the association of BC in our population with known non-coding genetic variants, and the remainder of WES-generated private Lebanese variants.


Subject(s)
Genetic Predisposition to Disease , Urinary Bladder Neoplasms , Case-Control Studies , Humans , Polymorphism, Single Nucleotide , Urinary Bladder Neoplasms/genetics , Exome Sequencing
15.
Eur J Neurol ; 29(8): 2486-2492, 2022 08.
Article in English | MEDLINE | ID: mdl-35638367

ABSTRACT

BACKGROUND AND PURPOSE: Epileptic encephalopathy (EE) refers to a heterogeneous group of epilepsy syndromes characterized by seizures as well as encephalopathies, leading to cognitive and behavioral disturbances. These conditions vary in their age at onset, their severity, and their electroencephalographic patterns. Whereas genetic factors are involved in approximately 40% of all epilepsy cases, they contribute to 80% of early infantile EEs (EIEEs), with approximately 125 genes previously linked to this disease. METHODS: Whole exome sequencing (WES) was performed in a 9-month-old Lebanese girl presenting with EIEE. RESULTS: WES enabled the detection of a homozygous missense mutation in the NECAP1 gene (NM_015509.3: p.Glu8Lys) in the proband. CONCLUSIONS: Here, we report the first homozygous missense mutation in the NECAP1 gene in a 9-month-old girl presenting with EIEE. Our findings allow a better characterization of the NECAP1-linked disease and enable broadening its clinical spectrum by including, in addition to EIEE, severe generalized hypotonia, poor feeding, developmental delay, severe microcephaly, delayed myelination, abnormalities of the corpus callosum, and eye abnormalities.


Subject(s)
Epilepsy , Spasms, Infantile , Electroencephalography , Epilepsy/genetics , Female , Homozygote , Humans , Infant , Mutation/genetics , Spasms, Infantile/genetics
16.
Neurogenetics ; 23(2): 85-90, 2022 04.
Article in English | MEDLINE | ID: mdl-35041108

ABSTRACT

Hereditary spastic paraplegia (HSP) refers to a group of genetic disorders characterized by progressive weakness and stiffness in the muscles of the legs. To date, more than 83 types of HSP exist, differing in their etiology, their degree of severity, and the nature of symptoms associated with each of these conditions. Owing to their genetic and clinical heterogeneity, the establishment of an accurate diagnosis can be very challenging, especially with the clinical overlap observed between those conditions and other neurogenetic diseases. A 7-year-old girl, born to a consanguineous Iraqi family, was referred to us for clinical and genetic evaluation. The patient presents with progressive difficulty in walking that started when she was 3 years old, lower limb predominant spastic paraparesis, and mild upper limbs involvement with slight tremor in the hands, all occurring in the absence of neurodevelopmental or growth delays. Whole exome sequencing revealed a novel homozygous missense variation in the RNF170 gene (NM_030954.3; p.Cys107Trp), thus establishing the diagnosis of HSP. Here, we report the second missense biallelic variation in RNF170 and we discuss thoroughly all previously reported cases with RNF170-linked HSP.


Subject(s)
Spastic Paraplegia, Hereditary , Child , Child, Preschool , Female , Homozygote , Humans , Mutation , Pedigree , Spastic Paraplegia, Hereditary/diagnosis , Spastic Paraplegia, Hereditary/genetics , Ubiquitin-Protein Ligases/genetics , Exome Sequencing
17.
Mol Oncol ; 16(9): 1931-1946, 2022 05.
Article in English | MEDLINE | ID: mdl-33715271

ABSTRACT

Cutaneous T-cell lymphomas (CTCLs) are telomerase-positive tumors expressing hTERT, although neither gene rearrangement/amplification nor promoter hotspot mutations could explain the hTERT re-expression. As the hTERT promoter is rich in CpG, we investigated the contribution of epigenetic mechanisms in its re-expression. We analyzed hTERT promoter methylation status in CTCL cells compared with healthy cells. Gene-specific methylation analyses revealed a common methylation pattern exclusively in tumor cells. This methylation pattern encompassed a hypermethylated distal region from -650 to -150 bp and a hypomethylated proximal region from -150 to +150 bp. Interestingly, the hypermethylated region matches with the recently named TERT hypermethylated oncogenic region (THOR). THOR has been associated with telomerase reactivation in many cancers, but it has so far not been reported in cutaneous lymphomas. Additionally, we assessed the effect of THOR on two histone deacetylase inhibitors (HDACi), romidepsin and vorinostat, both approved for CTCL treatment and a DNA methyltransferase inhibitor (DNMTi) 5-azacytidine, unapproved for CTCL. Contrary to our expectations, the findings reported herein revealed that THOR methylation is relatively stable under these epigenetic drugs' pressure, whereas these drugs reduced the hTERT gene expression.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Telomerase , DNA Methylation/genetics , Epigenesis, Genetic , Humans , Lymphoma, T-Cell, Cutaneous/genetics , Promoter Regions, Genetic/genetics , Telomerase/genetics , Telomerase/metabolism
18.
J Neuromuscul Dis ; 9(1): 193-210, 2022.
Article in English | MEDLINE | ID: mdl-34602496

ABSTRACT

BACKGROUND: Clinical and molecular data on the occurrence and frequency of inherited neuromuscular disorders (NMD) in the Lebanese population is scarce. OBJECTIVE: This study aims to provide a retrospective overview of hereditary NMDs based on our clinical consultations in Lebanon. METHODS: Clinical and molecular data of patients referred to a multi-disciplinary consultation for neuromuscular disorders over a 20-year period (1999-2019) was reviewed. RESULTS: A total of 506 patients were diagnosed with 62 different disorders encompassing 10 classes of NMDs. 103 variants in 49 genes were identified. In this cohort, 81.4% of patients were diagnosed with motor neuron diseases and muscular dystrophies, with almost half of these described with spinal muscular atrophy (SMA) (40.3% of patients). We estimate a high SMA incidence of 1 in 7,500 births in Lebanon. Duchenne and Becker muscular dystrophy were the second most frequently diagnosed NMDs (17% of patients). These disorders were associated with the highest number of variants (39) identified in this study. A highly heterogeneous presentation of Limb Girdle Muscular Dystrophy and Charcot-Marie-Tooth disease was notably identified. The least common disorders (5.5% of patients) involved congenital, metabolic, and mitochondrial myopathies, congenital myasthenic syndromes, and myotonic dystrophies. A review of the literature for selected NMDs in Lebanon is provided. CONCLUSIONS: Our study indicates a high prevalence and underreporting of heterogeneous forms of NMDs in Lebanon- a major challenge with many novel NMD treatments in the pipeline. This report calls for a regional NMD patient registry.


Subject(s)
Motor Neuron Disease/epidemiology , Motor Neuron Disease/genetics , Muscular Dystrophies/epidemiology , Muscular Dystrophies/genetics , Adolescent , Adult , Charcot-Marie-Tooth Disease/epidemiology , Charcot-Marie-Tooth Disease/genetics , Child , Child, Preschool , Female , Humans , Infant , Lebanon/epidemiology , Male , Middle Aged , Muscular Atrophy, Spinal/epidemiology , Muscular Atrophy, Spinal/genetics , Muscular Dystrophies, Limb-Girdle/epidemiology , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophy, Duchenne/epidemiology , Muscular Dystrophy, Duchenne/genetics , Retrospective Studies , Young Adult
19.
Pharmacogenomics ; 22(12): 791-803, 2021 08.
Article in English | MEDLINE | ID: mdl-34410147

ABSTRACT

Among all cancer types, pulmonary cancer has the highest mortality rate. Tobacco consumption remains the major risk factor for the development of lung cancer. However, many studies revealed a correlation between inherited genetic variants and predisposition to lung cancer, especially in nonsmokers. To date, genetic testing for the detection of germline mutations is not yet recommended in patients with lung cancer and testing is focused on somatic alterations given their implication in the treatment choice. Understanding the impact of genetic predisposition on the occurrence of lung cancer is essential to enable the introduction of accurate guidelines and recommendations that might reduce mortality. In this review paper, we describe familial lung cancer, and expose germline mutations that are linked to this type of cancer. We also report pathogenic genetic variants linked to syndromes associated with lung cancer.


Subject(s)
Genetic Predisposition to Disease/genetics , Genetic Testing/methods , Germ-Line Mutation/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Genetic Predisposition to Disease/epidemiology , Genetic Testing/trends , Humans , Lung Neoplasms/epidemiology
20.
BMC Med Genomics ; 14(1): 187, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34284772

ABSTRACT

BACKGROUND: Basal cell carcinoma (BCC) represents by far the most common non-melanoma skin cancer (NMSC) in the world with an increasing incidence of 3% to 10% per year, especially in patients under the age of 40. While variants in the sonic Hedgehog and cell cycle regulation pathways account for the majority of BCC cases in adults, the molecular etiology of BCC in young patients is unelucidated yet. This study aims to investigate the molecular profile of BCC in the young population. METHODS: 28 tumors belonging to 25 Lebanese patients under the age of 40, presenting different stages of BCC and diagnosed at Hôtel Dieu de France-Saint Joseph University Medical Center were included in this study. A selected panel of 150 genes involved in cancer was analyzed by Next Generation Sequencing (NGS) in the 28 included tumors. RESULTS: Genetic variants detected in more than 5% of the reads, with a sequencing depth ≥ 50x, were selected. Two hundred and two genetic variants in 48 different genes were detected, with an overall average sequencing depth of 1069x. Among the 28 studied tumors, 18 (64.3%) show variations in the PTCH1 gene, 6 (21.4%) in TP53 and 3 (10.7%) in SMO. CONCLUSIONS: This is the first study reporting NGS-based analysis of BCC in a cohort of young patients. Our results highlight the involvement of the hedgehog and cell cycle regulation pathways in the genesis of BCC in the general population. The inclusion of a larger cohort of young patients is needed to confirm our findings.


Subject(s)
Carcinoma, Basal Cell
SELECTION OF CITATIONS
SEARCH DETAIL
...