Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Small ; 20(35): e2401248, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38639029

ABSTRACT

Chlorine has been supplied by the chlor-alkali process that deploys dimensionally stable anodes (DSAs) for the electrochemical chlorine evolution reaction (ClER). The paramount bottlenecks have been ascribed to an intensive usage of precious elements and inevitable competition with the oxygen evolution reaction. Herein, a unique case of Ru2+-O4 active motifs anchored on Magnéli Ti4O7 (Ru-Ti4O7) via a straightforward wet impregnation and mild annealing is reported. The Ru-Ti4O7 performs radically active ClER with minimal deployment of Ru (0.13 wt%), both in 5 m NaCl (pH 2.3) and 0.1 m NaCl (pH 6.5) electrolytes. Scanning electrochemical microscopy demonstrates superior ClER selectivity on Ru-Ti4O7 compared to the DSA. Operando X-ray absorption spectroscopy and density functional theory calculations reveal a universally active ClER (over a wide range of pH and [Cl-]), through a direct adsorption of Cl- on Ru2+-O4 sites as the most plausible pathway, together with stabilized ClO* at low [Cl-] and high pH.

2.
Nanoscale Adv ; 3(24): 6797-6826, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-36132358

ABSTRACT

Water electrolysis is a promising solution to convert renewable energy sources to hydrogen as a high-energy-density energy carrier. Although alkaline conditions extend the scope of electrocatalysts beyond precious metal-based materials to earth-abundant materials, the sluggish kinetics of cathodic and anodic reactions (hydrogen and oxygen evolution reactions, respectively) impede the development of practical electrocatalysts that do not use precious metals. This review discusses the rational design of efficient electrocatalysts by exploiting the understanding of alkaline hydrogen evolution reaction and oxygen evolution reaction mechanisms and of the electron structure-activity relationship, as achieved by combining experimental and computational approaches. The enhancement of water splitting not only deals with intrinsic catalytic activity but also includes the aspect of electrical conductivity and stability. Future perspectives to increase the synergy between theory and experiment are also proposed.

SELECTION OF CITATIONS
SEARCH DETAIL