Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Food Funct ; 15(11): 5987-5999, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38742436

ABSTRACT

The considerable value of whey is evident from its significant potential applications and contributions to the functional food and nutraceutical market. The by-products were individually obtained during functional chhurpi and novel soy chhurpi cheese production using defined lactic acid bacterial strains of Sikkim Himalaya's traditional chhurpi. Hydrolysis of substrate proteins by starter proteinases resulted in a comparable peptide content in whey and soy whey which was associated with antioxidant and ACE inhibition potential. Peptidome analysis of Lactobacillus delbrueckii WS4 whey and soy whey revealed the presence of several bioactive peptides including the multifunctional peptides PVVVPPFLQPE and YQEPVLGPVRGPFPIIV. In silico analyses predicted the antihypertensive potential of whey and soy whey peptides with strong binding affinity for ACE active sites. QSAR models predicted the highest ACE inhibition potential (IC50) for the ß-casein-derived decapeptide PVRGPFPIIV (0.95 µM) and the Kunitz trypsin inhibitor protein-derived nonapeptide KNKPLVVQF (16.64 µM). Chhurpi whey and soy whey can be explored as a valuable source of diverse and novel bioactive peptides for applications in designer functional foods development.


Subject(s)
Lactobacillus delbrueckii , Peptides , Lactobacillus delbrueckii/metabolism , Peptides/chemistry , Peptides/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Cheese/microbiology , Cheese/analysis , Whey/chemistry , Functional Food , Antioxidants/pharmacology , Antioxidants/chemistry , Whey Proteins/chemistry
2.
J Food Sci Technol ; 60(10): 2649-2658, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37599855

ABSTRACT

In this study, antioxidative methanolic leaf extract (MeOH-SIS) of Urtica dioica was characterized for anti-diabetic activity. The extract was purified on a column to yield seven homogenous fractions (F1-F7) which were further determined for DPPH radical scavenging activity. MeOH-SIS and the fraction F1 (selected based on % yield and activity) were evaluated for their in vitro α-amylase and α-glucosidase inhibitory activity. The results showed inhibition of both enzymes in a dose dependent manner and F1 exhibited relatively higher inhibition than its mother extract MeOH-SIS. GC-MS analyses of both the extracts identified 24 major compounds among which 10 were previously described as bioactive compounds. Among all, 5 compounds demonstrated to have quality pharmacokinetics profiles and were examined for possible binding affinity against the active sites of α-amylase and α-glucosidase using molecular docking. The binding interaction of 2R-acetoxymethyl-1,3,3-trimethyl-4 T-(3-methyl-2-buten-1-yl)-1 T-cyclohexanol within the active sites of the target receptors was found to be significant among others, and can be developed as a potential inhibitor of α-amylase and α-glucosidase. The leaf extract can be utilized to develop food additive for the control and management of oxidative stress induced diabetes.

3.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37405373

ABSTRACT

With the growing demand for functional foods having better nutraceutical properties, lactic acid bacteria (LAB) has become an important industrial microorganism. LAB play a significant role in the functional food industry by exhibiting probiotic properties and has the ability to produce various biologically active metabolites such as γ-aminobutyric acid (GABA), exopolysaccharides (EPSs), conjugated linoleic acid (CLA), bacteriocins, reuterin and reutericyclin, which provides enhanced nutraceutical properties to the final food products. LAB are also known to produce several specific enzymes essential for producing substrate-derived bioactive compounds, such as polyphenols, bioactive peptides, inulin-type fructans and ß-glucans, fatty acids, and polyols. These compounds exhibit many health benefits, including better mineral absorption, oxidative stress protection, blood glucose and cholesterol-lowering properties, prevention of gastrointestinal tract infections and improved cardiovascular function. Further, metabolically engineered LAB have been widely used for the nutritive enhancement of different food products and the application of CRISPR-Cas9 holds tremendous potential for the engineering of food cultures. This review provides an overview of the use of LAB as probiotics, its application in producing fermented foods and nutraceutical products, and its health benefits on the host.

4.
Curr Genet ; 68(3-4): 375-391, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35532798

ABSTRACT

The genomic analysis of industrially important bacteria can help in understanding their capability to withstand extreme environments and shed light on their metabolic capabilities. The whole genome of a previously reported broad temperature active lipase-producing Pseudomonas sp. HS6, isolated from snow-covered soil of the Sikkim Himalayan Region, was analyzed to understand the capability of the bacterium to withstand cold temperatures and study its lipolytic nature. Pseudomonas sp. HS6 was found to be psychrotolerant with an optimal growth temperature ranging between 25 and 30 °C, with the ability to grow at 5 °C. The genome harbours various cold-adaptation genes, such as cold-shock proteins, fatty acid alteration, and cold stress-tolerance genes, supporting the psychrotolerant nature of the organism. The comparative analysis of Pseudomonas sp. HS6 genome showed the presence of amino acid substitutions in genes that favor efficient functioning and flexibility at cold temperatures. Genome mining revealed the presence of four triacylglycerol lipases, among which the putative lipase 3 was highly similar to the broad temperature-active lipase purified and characterized in our previous study. In silico studies of putative lipase 3 revealed broad substrate specificity with partial and no inhibition of the enzyme activity in the presence of PMSF and orlistat. The presence of genes associated with cold adaptations and true lipases with activity at broad temperature and substrate specificity in the genome of Pseudomonas sp. HS6 makes this bacterium a suitable candidate for industrial applications.


Subject(s)
Lipase , Pseudomonas , Cold Temperature , Genomics , Lipase/chemistry , Lipase/genetics , Lipase/metabolism , Pseudomonas/genetics , Sikkim , Snow , Soil , Substrate Specificity
5.
Food Chem X ; 13: 100231, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35499015

ABSTRACT

In this study, simulated in vitro GI digestion of the Himalayan hard chhurpi cheese resulted in the increase of hydrolyzed protein content, antioxidant and ACE-inhibitory activities. LC-MS/MS-based peptidomics revealed a total of 1473 peptides in the samples originating from different milk proteins, including α-S1-casein, α-S2-casein, ß-casein, κ-casein, α-lactalbumin, and ß-lactoglobulin, out of which 60 peptides have been reported for different functional properties. A total of 101 peptides were predicted to be antihypertensive using the bioactivity prediction web servers, AHTpin and mAHTPred. In silico molecular docking studies predicted 20 antihypertensive peptides, exhibiting non-bond interactions between hard chhurpi peptides and ACE catalytic residues. A peptide, SLVYPFPGPI, identified in GI digested cow hard chhurpi and undigested, and GI digested samples of yak hard chhurpi, showed a stronger binding affinity towards ACE. Identifying antioxidant and ACE inhibitory peptides in hard cheese products adds value to them as functional foods of the Himalayan region.

6.
Food Chem ; 387: 132889, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35430540

ABSTRACT

A novel soy chhurpi product was developed by fermentation of soymilk using proteolytic Lactobacillus delbrueckii strains isolated from traditional chhurpi production of Sikkim Himalaya. Soymilk fermentation by L. delbrueckii WS4 was associated with the hydrolysis of globulin proteins, with observed antioxidant, and ACE-inhibitory activity which further increased upon simulated in vitro gastrointestinal digestion. Peptidomics analysis of soy chhurpi and its gastrointestinal digest resulted in the identification of bioactive peptides with ACE-inhibitory and antioxidant properties. In silico antihypertensive property prediction followed by molecular docking study demonstrated strong binding affinity of selected peptides with ACE. The glycinin-derived peptide, SVIKPPTDE escaped gastrointestinal digestion and demonstrated strong non-bond interactions with ACE catalytic residues. QSAR models predicted an ACE-inhibitory IC50 of 21.29 µM for SVIKPPTDE. This is the first report on the production of novel functional soy chhurpi cheese using defined starter strains and the identification of bioactive peptides in undigested and gastrointestinal digested soy chhurpi.


Subject(s)
Lactobacillus delbrueckii , Antioxidants , Lactobacillus delbrueckii/metabolism , Molecular Docking Simulation , Peptides/chemistry , Glycine max/metabolism
7.
Bioengineered ; 13(4): 9435-9454, 2022 04.
Article in English | MEDLINE | ID: mdl-35387556

ABSTRACT

Betacoronaviruses (ß-CoVs) have caused major viral outbreaks in the last two decades in the world. The mutation and recombination abilities in ß-CoVs resulted in zoonotic diseases in humans. Proteins responsible for viral attachment and replication are highly conserved in ß-CoVs. These conserved proteins have been extensively studied as targets for preventing infection and the spread of ß-CoVs. Peptides are among the most promising candidates for developing vaccines and therapeutics against viral pathogens. The immunostimulatory and viral inhibitory potential of natural and synthetic peptides has been extensively studied since the SARS-CoV outbreak. Food-derived peptides demonstrating high antiviral activity can be used to develop effective therapeutics against ß-CoVs. Specificity, tolerability, and customizability of peptides can be explored to develop potent drugs against ß-CoVs. However, the proteolytic susceptibility and low bioavailability of peptides pose challenges for the development of therapeutics. This review illustrates the potential role of peptides in eliciting an adaptive immune response and inhibiting different stages of the ß-CoV life cycle. Further, the challenges and future directions associated with developing peptide-based therapeutics and vaccines against existing and future ß-CoV pathogens have been discussed.


Subject(s)
Coronavirus Infections , Vaccines , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Humans , Mutation , Peptides/genetics , Peptides/therapeutic use , Vaccines/therapeutic use
8.
Bioresour Technol ; 351: 126932, 2022 May.
Article in English | MEDLINE | ID: mdl-35248709

ABSTRACT

A bioprocess was developed for production of bioactive peptides on microbial fermentation of rice beans using proteolytic Bacillus subtilis strains. The peptides produced were identified by LC-MS/MS analysis, revealing the presence of many unique peptide sequences to individual hydrolysates. On functional properties prediction, antihypertensive peptides (3.90%) were found to be higher in comparison to other bioactive peptides. Among different strains, B. subtilis KN2B fermented hydrolysate exhibited highest angiotensin converting enzyme (ACE)-inhibitory activity (45.73%). Furthermore, 19 selected peptides, including the common and unique peptides were examined for their affinity towards the binding cavity of ACE using molecular docking. The results showed a common peptide PFPIPFPIPIPLP, and another IPFPPIPFLPPI unique to B. subtilis KN2B fermented hydrolysate exhibited promising binding at the ACE binding site with substantial free binding energy. The process developed can be used for the production of bioactive peptides from rice bean for application in nutraceutical industries.


Subject(s)
Bacillus subtilis , Vigna , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Bacillus subtilis/metabolism , Chromatography, Liquid , Molecular Docking Simulation , Peptides/metabolism , Tandem Mass Spectrometry , Vigna/metabolism
9.
Front Mol Biosci ; 8: 636647, 2021.
Article in English | MEDLINE | ID: mdl-33869283

ABSTRACT

Fermented soybean products are traditionally consumed and popular in many Asian countries and the northeastern part of India. To search for potential agents for the interruption of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike glycoprotein 1 (S1) and human angiotensin-converting enzyme 2 (ACE2) receptor interactions, the in silico antiviral prospective of peptides identified from the proteome of kinema was investigated. Soybean was fermented using Bacillus licheniformis KN1G, Bacillus amyloliquefaciens KN2G and two different strains of Bacillus subtilis (KN2B and KN2M). The peptides were screened in silico for possible antiviral activity using two different web servers (AVPpred and meta-iAVP), and binding interactions of selected 44 peptides were further explored against the receptor-binding domain (RBD) of the S1 protein (PDB ID: 6M0J) by molecular docking using ZDOCK. The results showed that a peptide ALPEEVIQHTFNLKSQ (P13) belonging to B. licheniformis KN1G fermented kinema was able to make contacts with the binding motif of RBD by blocking specific residues designated as critical (GLN493, ASN501) in the binding of human angiotensin-converting enzyme 2 (ACE2) cell receptor. The selected peptide was also observed to have a significant affinity towards human toll like receptor 4 (TLR4)/Myeloid Differentiation factor 2 (MD2) (PDB ID: 3FXI) complex known for its essential role in cytokine storm. The energy properties of the docked complexes were analyzed through the Generalized Born model and Solvent Accessibility method (MM/GBSA) using HawkDock server. The results showed peptidyl amino acids GLU5, GLN8, PHE11, and LEU13 contributed most to P13-RBD binding. Similarly, ARG90, PHE121, LEU61, PHE126, and ILE94 were appeared to be significant in P13-TLR4/MD2 complex. The findings of the study suggest that the peptides from fermented soy prepared using B. licheniformis KN1G have better potential to be used as antiviral agents. The specific peptide ALPEEVIQHTFNLKSQ could be synthesized and used in combination with experimental studies to validate its effect on SARS-CoV-2-hACE2 interaction and modulation of TLR4 activity. Subsequently, the protein hydrolysate comprising these peptides could be used as prophylaxis against viral diseases, including COVID-19.

10.
Compr Rev Food Sci Food Saf ; 20(1): 960-979, 2021 01.
Article in English | MEDLINE | ID: mdl-33325160

ABSTRACT

Cheese is a product of ancient biotechnological practices, which has been revolutionized as a functional food product in many parts of the world. Bioactive compounds, such as peptides, polysaccharides, and fatty acids, have been identified in traditional cheese products, which demonstrate functional properties such as antihypertensive, antioxidant, immunomodulation, antidiabetic, and anticancer activities. Besides, cheese-making probiotic lactic acid bacteria (LAB) exert a positive impact on gut health, aiding in digestion, and improved nutrient absorption. Advancement in biotechnological research revealed the potential of metabolite production with prebiotics and bioactive functions in several strains of LAB, yeast, and filamentous fungi. The application of specific biocatalyst producing microbial strains enhances nutraceutical value, resulting in designer cheese products with multifarious health beneficial effects. This review summarizes the biotechnological approaches applied in designing cheese products with improved functional properties.


Subject(s)
Cheese , Lactobacillales , Probiotics , Fatty Acids , Functional Food
11.
Eur J Pharmacol ; 890: 173648, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33069672

ABSTRACT

In an attempt to search for selective inhibitors against the SARS-CoV-2 which caused devastating of lives and livelihoods across the globe, 415 natural metabolites isolated from several plants, fungi and bacteria, belonging to different classes, were investigated. The drug metabolism and safety profiles were computed in silico and the results showed seven compounds namely fusaric acid, jasmonic acid, jasmonic acid methyl ester, putaminoxin, putaminoxin B and D, and stagonolide K were predicted to having considerable absorption, metabolism, distribution and excretion parameters (ADME) and safety indices. Molecular docking against the receptor binding domain (RBD) of spike glycoprotein (S1) and the main protease (Mpro) exposed the compounds having better binding affinity to main protease as compared to the S1 receptor binding domain. The docking results were compared to an antiviral drug penciclovir reportedly of clinical significance in treating the SARS-CoV-2 infected patients. The results demonstrated the test compounds jasmonic acid, putaminoxins B and D bound to the HIS-CYS catalytic dyad as well as to other residues within the MPro active site with much greater affinity than penciclovir. The findings of the study suggest that these compounds could be explored as potential SARS-CoV-2 inhibitors, and could further be combined with the experimental investigations to develop effective therapeutics to deal with the present pandemic.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , Coronavirus 3C Proteases/metabolism , Phytochemicals/pharmacology , Protease Inhibitors/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/pharmacokinetics , Bacteria/metabolism , Biological Products/pharmacokinetics , Blood-Brain Barrier/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Cyclopentanes/pharmacokinetics , Cyclopentanes/pharmacology , Fungi/metabolism , Humans , Intestinal Absorption , Lactones/pharmacokinetics , Lactones/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Oxylipins/pharmacokinetics , Oxylipins/pharmacology , Phytochemicals/pharmacokinetics , Plants/metabolism , Protease Inhibitors/pharmacokinetics , Protein Binding , Protein Domains , SARS-CoV-2
12.
Front Mol Biosci ; 7: 601753, 2020.
Article in English | MEDLINE | ID: mdl-33363209

ABSTRACT

The COVID-19 pandemic caused by novel SARS-CoV-2 has resulted in an unprecedented loss of lives and economy around the world. In this study, search for potential inhibitors against two of the best characterized SARS-CoV-2 drug targets: S1 glycoprotein receptor-binding domain (RBD) and main protease (3CLPro), was carried out using the soy cheese peptides. A total of 1,420 peptides identified from the cheese peptidome produced using Lactobacillus delbrueckii WS4 were screened for antiviral activity by employing the web tools, AVPpred, and meta-iAVP. Molecular docking studies of the selected peptides revealed one potential peptide "KFVPKQPNMIL" that demonstrated strong affinity toward significant amino acid residues responsible for the host cell entry (RBD) and multiplication (3CLpro) of SARS-CoV-2. The peptide was also assessed for its ability to interact with the critical residues of S1 RBD and 3CLpro of other ß-coronaviruses. High binding affinity was observed toward critical amino acids of both the targeted proteins in SARS-CoV, MERS-CoV, and HCoV-HKU1. The binding energy of KFVPKQPNMIL against RBD and 3CLpro of the four viruses ranged from -8.45 to -26.8 kcal/mol and -15.22 to -22.85 kcal/mol, respectively. The findings conclude that cheese, produced by using Lb. delbrueckii WS4, could be explored as a prophylactic food for SARS-CoV-2 and related viruses. In addition, the multi-target inhibitor peptide, which effectively inhibited both the viral proteins, could further be used as a terminus a quo for the in vitro and in vivo function against SARS-CoV-2.

13.
Bioresour Technol ; 309: 123352, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32299046

ABSTRACT

The aim of this study was to explore novel source of lipase from biodiversity hot spot region of Sikkim with activity at broad temperature range for application in detergent industry. Among the isolates, Pseudomonas helmanticensis HS6 showed activity at wide range of temperatures was selected for lipase production. Statistical optimisation for enhanced production of lipase resulted in enhancement of lipase activity from 2.3 to 179.3 U/mg. Lipase was purified resulting in 18.78 fold purification, 5.58% yield and high specific activity of 3368 U/mg. The partially purified lipase was found to be active in wide range of temperature (5-80 °C) and pH (6-9), showing optimum activity at 50 °C at pH 7. Peptide sequences on mass spectrometric analysis of purified lipase showed similarity to lipase family protein of three species of Pseudomonas. Both crude and purified lipase retained residual activity of 40-80% after 3 h of incubation with commercial detergents suggesting its application in detergent industry.


Subject(s)
Detergents , Lipase , Enzyme Stability , Hydrogen-Ion Concentration , Pseudomonas , Temperature
14.
Bioresour Technol ; 235: 358-365, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28384588

ABSTRACT

The aim of this study was the production of soybean bioactive hydrolysate using Bacillus spp. isolated from kinema. Totally 251 bacteria isolated from kinema samples, collected at different time period were screened for protease, ß-glucosidase and α-amylase activities and further identified by ARDRA based grouping followed by analysis of 16S rRNA gene sequence similarity. The results showed that Bacillus subtilis, Bacillus amyloliquefaciens and Bacillus licheniformis were the major Bacillus species. Twelve fermentative strains belonging to these groups and having high protease, α-amylase and ß-glucosidase activity were used for solid state fermentation. The best strains for soybean fermentation that result in production of protein hydrolysates rich in polyphenols that have higher bioactivity were B. subtilis KN12C, B. amyloliquefaciens KN2G and B. licheniformis KN13C. Potential isolates can be applied for the production of soybean hydrolysates and can also find application in production of value added products from by-products of soybean processing industries.


Subject(s)
Bacillus/metabolism , alpha-Amylases/metabolism , Fermentation , RNA, Ribosomal, 16S/genetics , beta-Glucosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...