Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 13(27): 32363-32380, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34223766

ABSTRACT

TiO2/Cu2O/CuO multi-nanolayers highly sensitive toward volatile organic compounds (VOCs) and H2 have been grown in various thicknesses by a cost-effective and reproducible combined spray-sputtering-annealing approach. The ultrathin TiO2 films were deposited by spray pyrolysis on top of sputtered-annealed Cu2O/CuO nanolayers to enhance their gas sensing performance and improve their protection against corrosion at high operating temperatures. The prepared heterostructures were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultraviolet visible (UV-vis) and micro-Raman spectroscopy. The gas sensing properties were measured at several operating temperatures, where the nanolayered sensors with oxide thicknesses between 20 and 30 nm (Cu2O/CuO nanolayers) exhibited a high response and an excellent selectivity to ethanol vapor after thermal annealing the samples at 420 °C. The results obtained at an operating temperature of 350 °C demonstrate that the CuO/Cu2O nanolayers with thicknesses between 20 and 30 nm are sensitive mainly to ethanol vapor, with a response of ∼150. The response changes from ethanol vapors to hydrogen gas as the thickness of the CuO/Cu2O nanolayers changes from 50 to 20 nm. Density functional theory-based calculations were carried out for the geometries of the CuO(1̅11)/Cu2O(111) and TiO2(111)/CuO(1̅11)/Cu2O(111) heterostructures and their sensing mechanism toward alcohols of different chain lengths and molecular hydrogen. The reconstructed hexagonal Cu2O(111) surface and the reconstructed monoclinic CuO(1̅11) and TiO2(111) facets, all of which terminate in an O layer, lead to the lowest surface energies for each isolated material. We studied the formation of the binary and ternary heteroepitaxial interfaces for the surface planes with the best-matching lattices. Despite the impact of the Cu2O(111) substrate in lowering the atomic charges of the CuO(1̅11) adlayer in the binary sensor, we found that it is the different surface structures of the CuO(1̅11)/Cu2O(111) and TiO2(111)/CuO(1̅11)/Cu2O(111) devices that are fundamental in driving the change in the sensitivity response observed experimentally. The experimental data, supported by the computational results, are important in understanding the use of the multi-nanolayered films tested in this work as reliable, accurate, and selective sensor structures for the tracking of gases at low concentrations.

2.
ACS Appl Mater Interfaces ; 13(8): 10537-10552, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33600155

ABSTRACT

A comparative investigation of the post-electroplating treatment influence on the gas detecting performances of single ZnO nanorod/nanowire (NR/NW), as grown by electrochemical deposition (ECD) and integrated into nanosensor devices, is presented. In this work, hydrothermal treatment (HT) in a H2O steam and conventional thermal annealing (CTA) in a furnace at 150 °C in ambient were used as post-growth treatments to improve the material properties. Herein, the morphological, optical, chemical, structural, vibrational, and gas sensing performances of the as-electrodeposited and treated specimens are investigated and presented in detail. By varying the growth temperature and type of post-growth treatment, the morphology is maintained, whereas the optical and structural properties show increased sample crystallization. It is shown that HT in H2O vapors affects the optical and vibrational properties of the material. After investigation of nanodevices based on single ZnO NR/NWs, it was observed that higher temperature during the synthesis results in a higher gas response to H2 gas within the investigated operating temperature range from 25 to 150 °C. CTA and HT or autoclave treatment showed the capability of a further increase in gas response of the prepared sensors by a factor of ∼8. Density functional theory calculations reveal structural and electronic band changes in ZnO surfaces as a result of strong interaction with H2 gas molecules. Our results demonstrate that high-performance devices can be obtained with high-crystallinity NWs/NRs after HT. The obtained devices could be the key element for flexible nanoelectronics and wearable electronics and have attracted great interest due to their unique specifications.

3.
Cancers (Basel) ; 12(11)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33202869

ABSTRACT

In this study, we developed a novel quantitative analysis method to enhance the detection capability for oral cancer screening. We combined two different optical techniques, a light-based detection technique (visually enhanced lesion scope) and a vibrational spectroscopic technique (Raman spectroscopy). Materials and methods: Thirty-five oral cancer patients who went through surgery were enrolled. Thirty-five cancer lesions and thirty-five control samples with normal oral mucosa (adjacent to the cancer lesion) were analyzed. Thirty-five autofluorescence images and 70 Raman spectra were taken from 35 cancer and 35 control group cryopreserved samples. The normalized intensity and heterogeneity of the 70 regions of interest (ROIs) were calculated along with 70 averaged Raman spectra. Linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) were used with principal component analysis (PCA) to differentiate the cancer and control groups (normal). The classifications rates were validated using two different validation methods, leave-one-out cross-validation (LOOCV) and k-fold cross-validation. Results: The cryopreserved normal and tumor tissues were differentiated using the PCA-LDA and PCA-QDA models. The PCA-LDA of Raman spectroscopy (RS) had 82.9% accuracy, 80% sensitivity, and 85.7% specificity, while ROIs on the autofluorescence images were differentiated with 90% accuracy, 100% sensitivity, and 80% specificity. The combination of two optical techniques differentiated cancer and normal group with 97.14% accuracy, 100% sensitivity, and 94.3% specificity. Conclusion: In this study, we combined the data of two different optical techniques. Furthermore, PCA-LDA and PCA-QDA quantitative analysis models were used to differentiate tumor and normal groups, creating a complementary pathway for efficient tumor diagnosis. The error rates of RS and VELcope analysis were 17.10% and 10%, respectively, which was reduced to 3% when the two optical techniques were combined.

4.
ACS Appl Mater Interfaces ; 12(37): 42248-42263, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32813500

ABSTRACT

In this study, a strategy to prepare CuO/Cu2O/Cu microwires that are fully covered by a nanowire (NW) network using a simple thermal-oxidation process is developed. The CuO/Cu2O/Cu microwires are fixed on Au/Cr pads with Cu microparticles. After thermal annealing at 425 °C, these CuO/Cu2O/Cu microwires are used as room-temperature 2-propanol sensors. These sensors show different dominating gas responses with operating temperatures, e.g., higher sensitivity to ethanol at 175 °C, higher sensitivity to 2-propanol at room temperature and 225 °C, and higher sensitivity to hydrogen gas at ∼300 °C. In this context, we propose the sensing mechanism of this three-in-one sensor based on CuO/Cu2O/Cu. X-ray diffraction (XRD) studies reveal that the annealing time during oxidation affects the chemical appearance of the sensor, while the intensity of reflections proves that for samples oxidized at 425 °C for 1 h the dominating phase is Cu2O, whereas upon further increasing the annealing duration up to 5 h, the CuO phase becomes dominant. The crystal structures of the Cu2O-shell/Cu-core and the CuO NW networks on the surface were confirmed with a transmission electron microscope (TEM), high-resolution TEM (HRTEM), and selected area electron diffraction (SAED), where (HR)TEM micrographs reveal the monoclinic CuO phase. Density functional theory (DFT) calculations bring valuable inputs to the interactions of the different gas molecules with the most stable top surface of CuO, revealing strong binding, electronic band-gap changes, and charge transfer due to the gas molecule interactions with the top surface. This research shows the importance of the nonplanar CuO/Cu2O layered heterostructure as a bright nanomaterial for the detection of various gases, controlled by the working temperature, and the insight presented here will be of significant value in the fabrication of new p-type sensing devices through simple nanotechnology.

5.
PLoS One ; 15(2): e0228132, 2020.
Article in English | MEDLINE | ID: mdl-32017775

ABSTRACT

BACKGROUND: Oral cancer is one of the most common diseases globally. Conventional oral examination and histopathological examination are the two main clinical methods for diagnosing oral cancer early. VELscope is an oral cancer-screening device that exploited autofluorescence. It yields inconsistent results when used to differentiate between normal, premalignant and malignant lesions. We develop a new method to increase the accuracy of differentiation. MATERIALS AND METHODS: Five samples (images) of each of 21 normal mucosae, as well as 31 premalignant and 16 malignant lesions of the tongue and buccal mucosa were collected under both white light and autofluorescence (VELscope, 400-460 nm wavelength). The images were developed using an iPod (Apple, Atlanta Georgia, USA). RESULTS: The normalized intensity and standard deviation of intensity were calculated to classify image pixels from the region of interest (ROI). Linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) classifiers were used. The performance of both of the classifiers was evaluated with respect to accuracy, precision, and recall. These parameters were used for multiclass classification. The accuracy rate of LDA with un-normalized data was increased by 2% and 14% and that of QDA was increased by 16% and 25% for the tongue and buccal mucosa, respectively. CONCLUSION: The QDA algorithm outperforms the LDA classifier in the analysis of autofluorescence images with respect to all of the standard evaluation parameters.


Subject(s)
Image Processing, Computer-Assisted , Mouth Neoplasms/diagnostic imaging , Optical Imaging , Adult , Discriminant Analysis , Female , Humans , Male , Mouth Mucosa/diagnostic imaging
6.
Nanotechnology ; 31(20): 205002, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32000142

ABSTRACT

We have performed extensive transport experiments on a 4 nm thick aluminum (Al) superconducting film grown on a GaAs substrate by molecular beam epitaxy (MBE). Nonlinear current-voltage (I-V) measurements on such a MBE-grown superconducting nanofilm show that V âˆ¼ I 3, which is evidence for the Berezinskii-Kosterlitz-Thouless (BKT) transition, both in the low-voltage (T BKT ≈ 1.97 K) and high-voltage regions (T BKT ≈ 2.17 K). In order to further study the two regions where the I-V curves are BKT-like, our experimental data are fitted to the temperature-induced vortices/antivortices unbinding model as well as the dynamical scaling theory. It is found that the transition temperature obtained in the high-voltage region is the correct T BKT as confirmed by fitting the data to the aforementioned models. Our experimental results unequivocally show that I-V measurements alone may not allow one to determine T BKT for superconducting transition. Therefore, one should try to fit one's results to the temperature-induced vortices/antivortices unbinding model and the dynamical scaling theory to accurately determine T BKT in a two-dimensional superconductor.

7.
J Clin Med ; 8(9)2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31461884

ABSTRACT

Raman spectroscopy (RS) is widely used as a non-invasive technique in screening for the diagnosis of oral cancer. The potential of this optical technique for several biomedical applications has been proved. This work studies the efficacy of RS in detecting oral cancer using sub-site-wise differentiation. A total of 80 samples (44 tumor and 36 normal) were cryopreserved from three different sub-sites: The tongue, the buccal mucosa, and the gingiva of the oral mucosa during surgery. Linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) were used with principal component analysis (PCA) to classify the samples and the classifications were validated by leave-one-out-cross-validation (LOOCV) and k-fold cross-validation methods. The normal and tumor tissues were differentiated under the PCA-LDA model with an accuracy of 81.25% (sensitivity: 77.27%, specificity: 86.11%). The PCA-QDA classifier model differentiated these tissues with an accuracy of 87.5% (sensitivity: 90.90%, specificity: 83.33%). The PCA-QDA classifier model outperformed the PCA-LDA-based classifier. The model studies revealed that protein, amino acid, and beta-carotene variations are the main biomolecular difference markers for detecting oral cancer.

8.
Microsc Microanal ; 25(2): 517-523, 2019 04.
Article in English | MEDLINE | ID: mdl-30698128

ABSTRACT

For a long time, secondary ion mass spectrometry (SIMS) was the only technique allowing impurity concentrations below 1 at% to be precisely measured in a sample with a depth resolution of few nanometers. For example, SIMS is the classical technique used in microelectronics to study dopant distribution in semiconductors and became, after radiotracers were forsaken, the principal tool used for atomic transport characterization (diffusion coefficient measurements). Due to the lack of other equivalent techniques, sometimes SIMS could be used erroneously, especially when the analyzed solute atoms formed clusters, or for interfacial concentration measurements (segregation coefficient measurements) for example. Today, concentration profiles measured by atom probe tomography (APT) can be compared to SIMS profiles and allow the accuracy of SIMS measurements to be better evaluated. However, APT measurements can also carry artifacts and limitations that can be investigated by SIMS. After a summary of SIMS and APT measurement advantages and disadvantages, the complementarity of these two techniques is discussed, particularly in the case of experiments aiming to measure diffusion and segregation coefficients.

9.
Materials (Basel) ; 11(3)2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29494534

ABSTRACT

The light emitting diode (LED) is widely used in modern solid-state lighting applications, and its output efficiency is closely related to the submounts' material properties. Most submounts used today, such as low-power printed circuit boards (PCBs) or high-power metal core printed circuit boards (MCPCBs), are not transparent and seriously decrease the output light extraction. To meet the requirements of high light output and better color mixing, a three-dimensional (3-D) stacked flip-chip (FC) LED module is proposed and demonstrated. To realize light penetration and mixing, the mentioned 3-D vertically stacking RGB LEDs use transparent glass as FC package submounts called glass circuit boards (GCB). Light emitted from each GCB stacked LEDs passes through each other and thus exhibits good output efficiency and homogeneous light-mixing characteristics. In this work, the parasitic problem of heat accumulation, which caused by the poor thermal conductivity of GCB and leads to a serious decrease in output efficiency, is solved by a proposed transparent cooling oil encapsulation (OCP) method.

10.
Materials (Basel) ; 10(4)2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28772792

ABSTRACT

Monolithic phosphor-free two-color gallium nitride (GaN)-based white light emitting diodes (LED) have the potential to replace current phosphor-based GaN white LEDs due to their low cost and long life cycle. Unfortunately, the growth of high indium content indium gallium nitride (InGaN)/GaN quantum dot and reported LED's color rendering index (CRI) are still problematic. Here, we use flip-chip technology to fabricate an upside down monolithic two-color phosphor-free LED with four grown layers of high indium quantum dots on top of the three grown layers of lower indium quantum wells separated by a GaN tunneling barrier layer. The photoluminescence (PL) and electroluminescence (EL) spectra of this white LED reveal a broad spectrum ranging from 475 to 675 nm which is close to an ideal white-light source. The corresponding color temperature and color rendering index (CRI) of the fabricated white LED, operated at 350, 500, and 750 mA, are comparable to that of the conventional phosphor-based LEDs. Insights of the epitaxial structure and the transport mechanism were revealed through the TEM and temperature dependent PL and EL measurements. Our results show true potential in the Epi-ready GaN white LEDs for future solid state lighting applications.

11.
Beilstein J Nanotechnol ; 6: 336-42, 2015.
Article in English | MEDLINE | ID: mdl-25821672

ABSTRACT

In this work a novel process allowing for the production of nanoporous Ge thin films is presented. This process uses the combination of two techniques: Ge sputtering on SiO2 and dopant ion implantation. The process entails four successive steps: (i) Ge sputtering on SiO2, (ii) implantation preannealing, (iii) high-dose dopant implantation, and (iv) implantation postannealing. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of the Ge film at different process steps under different postannealing conditions. For the same postannealing conditions, the Ge film topology was shown to be similar for different implantation doses and different dopants. However, the film topology can be controlled by adjusting the postannealing conditions.

12.
Materials (Basel) ; 8(10): 6761-6771, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-28793599

ABSTRACT

This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients.

13.
Cir Cir ; 72(2): 105-12, 2004.
Article in Spanish | MEDLINE | ID: mdl-15175126

ABSTRACT

OBJECTIVE: To evaluate hepatic resections in patient with benign and malignant lesions during the years 1997 to 2002 at the Autonomous University Hospital Service of Maracaibo, Venezuela. MATERIALS: We carried out 18 hepatic resections for benign and/or malignant lesions; traumatic and infectious lesions were excluded. RESULTS: The female sex prevailed with 77.7% and age ranged between third and fourth decade. Three asymptomatic patients (16.6%) and 83.3% symptomatic; pain in upper hemiabdomen 80%. Ultrasonography was employed in 94.4% of cases, CT 83.3%, FNAB 27.7%, arteriography 22.2%, Echo-Doppler 16.6%, laparoscopy 11.1%, hepatic scintigraphy and ERCP, 5.5%. Minor resections represented 61.1%. Major hepatic resections represented 38.8%, with prevalence of left hepatectomy (33.3%). Blood loss was greatest in major hepatic resections with average of 1,242.9 +/- 827.8 ml. Pringles maneuver was carried out in 90% with duration average of 8.5 min; morbidity was 16.6%. Benign tumours prevailed with 66.6%. CONCLUSION: The technique of resection with intraparenchymatous identification of pedicles makes it the most successful technique for hepatic resections.


Subject(s)
Hepatectomy/statistics & numerical data , Liver Diseases/surgery , Abdominal Pain/etiology , Adolescent , Adult , Aged , Blood Loss, Surgical , Carcinoma/diagnosis , Carcinoma/secondary , Carcinoma/surgery , Carcinoma, Hepatocellular/surgery , Female , Hepatectomy/methods , Humans , Liver Diseases/diagnosis , Liver Neoplasms/diagnosis , Liver Neoplasms/secondary , Liver Neoplasms/surgery , Male , Middle Aged , Preoperative Care , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...