Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
J Hepatol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782118

ABSTRACT

BACKGROUND & AIMS: Hepatocellular Carcinoma (HCC) is a highly fatal cancer characterized by high intra-tumor heterogeneity (ITH). A panoramic understanding of its tumor evolution, in relation to its clinical trajectory, may provide novel prognostic and treatment strategies. METHODS: Through the Asia-Pacific Hepatocellular Carcinoma (AHCC) trials group (NCT03267641), we recruited one of the largest prospective cohorts of HCC with over 600 whole genome and transcriptome samples from 123 treatment-naïve patients. RESULTS: Using a multi-region sampling approach, we revealed seven convergent genetic evolutionary paths governed by the early driver mutations, late copy number variations and viral integrations, which stratify patient clinical trajectories after surgical resection. Furthermore, such evolutionary paths shaped the molecular profiles, leading to distinct transcriptomic subtypes. Most significantly, although we found the coexistence of multiple transcriptomic subtypes within certain tumors, patient prognosis was best predicted by the most aggressive cell fraction of the tumor, rather than by overall degree of transcriptomic ITH level - a phenomenon we termed the 'bad apple' effect. Finally, we found that characteristics throughout early and late tumor evolution provide significant and complementary prognostic power in predicting patient survival. CONCLUSIONS: Taken together, our study generated a comprehensive landscape of evolutionary history for HCC and provided a rich multi-omics resource for understanding tumor heterogeneity and clinical trajectories. CLINICAL TRIAL NUMBER: NCT03267641 (Observational cohort) IMPACT AND IMPLICATIONS: This prospective study, utilizing comprehensive multi-sector, multi-omics sequencing and clinical data from surgically resected HCC, reveals critical insights into the role of tumor evolution and intra-tumor heterogeneity (ITH) in determining the prognosis of Hepatocellular Carcinoma (HCC). These findings are invaluable for oncology researchers and clinicians, as they underscore the influence of distinct evolutionary paths and the 'bad apple' effect, where the most aggressive tumor fraction dictates disease progression. These insights not only enhance prognostic accuracy post-surgical resection but also pave the way for developing personalized therapies tailored to specific tumor evolutionary and transcriptomic profiles. The co-existence of multiple sub-types within the same tumor prompts a re-appraisal of the utilities of depending on single samples to represent the entire tumor and suggests the need for clinical molecular imaging. This research thus marks a significant step forward in the clinical understanding and management of HCC, underscoring the importance of integrating tumor evolutionary dynamics and multi-omics biomarkers into therapeutic decision-making.

2.
Cancers (Basel) ; 16(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38672664

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common form of liver cancer, accounting for ~90% of liver neoplasms. It is the second leading cause of cancer-related deaths and the seventh most common cancer worldwide. Although there have been rapid developments in the treatment of HCC over the past decade, the incidence and mortality rates of HCC remain a challenge. With the widespread use of the hepatitis B vaccine and antiviral therapy, the etiology of HCC is shifting more toward metabolic-associated steatohepatitis (MASH). Early-stage HCC can be treated with potentially curative strategies such as surgical resection, liver transplantation, and radiofrequency ablation, improving long-term survival. However, most HCC patients, when diagnosed, are already in the intermediate or advanced stages. Molecular targeted therapy, followed by immune checkpoint inhibitor immunotherapy, has been a revolution in HCC systemic treatment. Systemic treatment of HCC especially for patients with compromised liver function is still a challenge due to a significant resistance to immune checkpoint blockade, tumor heterogeneity, lack of oncogenic addiction, and lack of effective predictive and therapeutic biomarkers.

3.
Int J Qual Health Care ; 36(1)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38506629

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic drove many healthcare systems worldwide to postpone elective surgery to increase healthcare capacity, manpower, and reduce infection risk to staff. The aim of this study was to assess the impact of an elective surgery postponement policy in response to the COVID-19 pandemic on surgical volumes and patient outcomes for three emergency bellwether procedures. A retrospective cohort study of patients who underwent any of the three emergency procedures [Caesarean section (CS), emergency laparotomy (EL), and open fracture (OF) fixation] between 1 January 2018 and 31 December 2021 was conducted using clinical and surgical data from electronic medical records. The volumes and outcomes of each surgery were compared across four time periods: pre-COVID (January 2018-January 2020), elective postponement (February-May 2020), recovery (June-November 2020), and postrecovery (December 2020-December 2021) using Kruskal-Wallis test and segmented negative binomial regression. There was a total of 3886, 1396, and 299 EL, CS, and OF, respectively. There was no change in weekly volumes of CS and OF fixations across the four time periods. However, the volume of EL increased by 47% [95% confidence interval: 26-71%, P = 9.13 × 10-7) and 52% (95% confidence interval: 25-85%, P = 3.80 × 10-5) in the recovery and postrecovery period, respectively. Outcomes did not worsen throughout the four time periods for all three procedures and some actually improved for EL from elective postponement onwards. Elective surgery postponement in the early COVID-19 pandemic did not affect volumes of emergency CS and OF fixations but led to an increase in volume for EL after the postponement without any worsening of outcomes.


Subject(s)
COVID-19 , Humans , Female , Pregnancy , COVID-19/epidemiology , Retrospective Studies , Pandemics , Cesarean Section , Singapore/epidemiology , Elective Surgical Procedures/methods
4.
Nat Cancer ; 5(1): 167-186, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38168935

ABSTRACT

Onco-fetal reprogramming of the tumor ecosystem induces fetal developmental signatures in the tumor microenvironment, leading to immunosuppressive features. Here, we employed single-cell RNA sequencing, spatial transcriptomics and bulk RNA sequencing to delineate specific cell subsets involved in hepatocellular carcinoma (HCC) relapse and response to immunotherapy. We identified POSTN+ extracellular matrix cancer-associated fibroblasts (EM CAFs) as a prominent onco-fetal interacting hub, promoting tumor progression. Cell-cell communication and spatial transcriptomics analysis revealed crosstalk and co-localization of onco-fetal cells, including POSTN+ CAFs, FOLR2+ macrophages and PLVAP+ endothelial cells. Further analyses suggest an association between onco-fetal reprogramming and epithelial-mesenchymal transition (EMT), tumor cell proliferation and recruitment of Treg cells, ultimately influencing early relapse and response to immunotherapy. In summary, our study identifies POSTN+ CAFs as part of the HCC onco-fetal niche and highlights its potential influence in EMT, relapse and immunotherapy response, paving the way for the use of onco-fetal signatures for therapeutic stratification.


Subject(s)
Carcinoma, Hepatocellular , Folate Receptor 2 , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/therapy , Liver Neoplasms/genetics , Ecosystem , Endothelial Cells , Cell Movement/genetics , Chronic Disease , Recurrence , Immunotherapy , Tumor Microenvironment/genetics
6.
JHEP Rep ; 5(6): 100715, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37168287

ABSTRACT

Background & Aims: Lifestyle and environmental-related exposures are important risk factors for hepatocellular carcinoma (HCC), suggesting that epigenetic dysregulation significantly underpins HCC. We profiled 30 surgically resected tumours and the matched adjacent normal tissues to understand the aberrant epigenetic events associated with HCC. Methods: We identified tumour differential enhancers and the associated genes by analysing H3K27 acetylation (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) and Hi-C/HiChIP data from the resected tumour samples of 30 patients with early-stage HCC. This epigenome dataset was analysed with previously reported genome and transcriptome data of the overlapping group of patients from the same cohort. We performed patient-specific differential expression testing using multiregion sequencing data to identify genes that undergo both enhancer and gene expression changes. Based on the genes selected, we identified two patient groups and performed a recurrence-free survival analysis. Results: We observed large-scale changes in the enhancer distribution between HCC tumours and the adjacent normal samples. Many of the gain-in-tumour enhancers showed corresponding upregulation of the associated genes and vice versa, but much of the enhancer and gene expression changes were patient-specific. A subset of the upregulated genes was activated in a subgroup of patients' tumours. Recurrence-free survival analysis revealed that the patients with a more robust upregulation of those genes showed a worse prognosis. Conclusions: We report the genomic enhancer signature associated with differential prognosis in HCC. Findings that cohere with oncofoetal reprogramming in HCC were underpinned by genome-wide enhancer rewiring. Our results present the epigenetic changes in HCC that offer the rational selection of epigenetic-driven gene targets for therapeutic intervention or disease prognostication in HCC. Impact and Implications: Lifestyle and environmental-related exposures are the important risk factors of hepatocellular carcinoma (HCC), suggesting that tumour-associated epigenetic dysregulations may significantly underpin HCC. We profiled tumour tissues and their matched normal from 30 patients with early-stage HCC to study the dysregulated epigenetic changes associated with HCC. By also analysing the patients' RNA-seq and clinical data, we found the signature genes - with epigenetic and transcriptomic dysregulation - associated with worse prognosis. Our findings suggest that systemic approaches are needed to consider the surrounding cellular environmental and epigenetic changes in HCC tumours.

7.
ACS Sens ; 8(5): 1989-1999, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37129234

ABSTRACT

Spalt-like transcription factor 4 (SALL4) is an oncofetal protein that has been identified to drive cancer progression in hepatocellular carcinoma (HCC) and hematological malignancies. Furthermore, a high SALL4 expression level is correlated to poor prognosis in these cancers. However, SALL4 lacks well-structured small-molecule binding pockets, making it difficult to design targeted inhibitors. SALL4-induced expression of oxidative phosphorylation (OXPHOS) genes may serve as a therapeutically targetable vulnerability in HCC through OXPHOS inhibition. Because OXPHOS functions through a set of genes with intertumoral heterogeneous expression, identifying therapeutic sensitivity to OXPHOS inhibitors may not rely on a single clear biomarker. Here, we developed a workflow that utilized molecular beacons, nucleic-acid-based, activatable sensors with high specificity to the target mRNA, delivered by nanodiamonds, to establish an artificial intelligence (AI)-assisted platform for rapid evaluation of patient-specific drug sensitivity. Specifically, when the HCC cells were treated with the nanodiamond-medicated OXPHOS biosensor, high sensitivity and specificity of the sensor allowed for improved identification of OXPHOS expression in cells. Assisted by a trained convolutional neural network, drug sensitivity of cells toward an OXPHOS inhibitor, IACS-010759, could be accurately predicted. AI-assisted OXPHOS drug sensitivity assessment could be accomplished within 1 day, enabling rapid and efficient clinical decision support for HCC treatment. The work proposed here serves as a foundation for the patient-based subtype-specific therapeutic research platform and is well suited for precision medicine.


Subject(s)
Antineoplastic Agents , Biosensing Techniques , Carcinoma, Hepatocellular , Liver Neoplasms , Nanodiamonds , Humans , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Nanodiamonds/therapeutic use , Oxidative Phosphorylation , Artificial Intelligence , Antineoplastic Agents/therapeutic use
8.
Mol Oncol ; 17(11): 2275-2294, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36896891

ABSTRACT

Hepatocellular carcinoma (HCC) is the third deadliest and sixth most common cancer in the world. Histone-lysine N-methyltransferase EHMT2 (also known as G9a) is a histone methyltransferase frequently overexpressed in many cancer types, including HCC. We showed that Myc-driven liver tumours have a unique H3K9 methylation pattern with corresponding G9a overexpression. This phenomenon of increased G9a was further observed in our c-Myc-positive HCC patient-derived xenografts. More importantly, we showed that HCC patients with higher c-Myc and G9a expression levels portend a poorer survival with lower median survival months. We demonstrated that c-Myc interacts with G9a in HCC and cooperates to regulate c-Myc-dependent gene repression. In addition, G9a stabilises c-Myc to promote cancer development, contributing to the growth and invasive capacity in HCC. Furthermore, combination therapy between G9a and synthetic-lethal target of c-Myc, CDK9, demonstrates strong efficacy in patient-derived avatars of Myc-driven HCC. Our work suggests that targeting G9a could prove to be a potential therapeutic avenue for Myc-driven liver cancer. This will increase our understanding of the underlying epigenetic mechanisms of aggressive tumour initiation and lead to improved therapeutic and diagnostic options for Myc-driven hepatic tumours.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Epigenesis, Genetic , Histocompatibility Antigens/genetics , Histocompatibility Antigens/metabolism , Histocompatibility Antigens/therapeutic use , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Methylation
9.
Gastroenterology ; 164(5): 766-782, 2023 04.
Article in English | MEDLINE | ID: mdl-36738977

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the leading cancers worldwide. Classically, HCC develops in genetically susceptible individuals who are exposed to risk factors, especially in the presence of liver cirrhosis. Significant temporal and geographic variations exist for HCC and its etiologies. Over time, the burden of HCC has shifted from the low-moderate to the high sociodemographic index regions, reflecting the transition from viral to nonviral causes. Geographically, the hepatitis viruses predominate as the causes of HCC in Asia and Africa. Although there are genetic conditions that confer increased risk for HCC, these diagnoses are rarely recognized outside North America and Europe. In this review, we will evaluate the epidemiologic trends and risk factors of HCC, and discuss the genetics of HCC, including monogenic diseases, single-nucleotide polymorphisms, gut microbiome, and somatic mutations.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/epidemiology , Liver Neoplasms/genetics , Liver Cirrhosis/epidemiology , Liver Cirrhosis/genetics , Liver Cirrhosis/complications , Risk Factors , North America/epidemiology
10.
Bioeng Transl Med ; 8(1): e10363, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36684069

ABSTRACT

Deregulation of MYC is among the most frequent oncogenic drivers in hepatocellular carcinoma (HCC). Unfortunately, the clinical success of MYC-targeted therapies is limited. Synthetic lethality offers an alternative therapeutic strategy by leveraging on vulnerabilities in tumors with MYC deregulation. While several synthetic lethal targets of MYC have been identified in HCC, the need to prioritize targets with the greatest therapeutic potential has been unmet. Here, we demonstrate that by pairing splice-switch oligonucleotide (SSO) technologies with our phenotypic-analytical hybrid multidrug interrogation platform, quadratic phenotypic optimization platform (QPOP), we can disrupt the functional expression of these targets in specific combinatorial tests to rapidly determine target-target interactions and rank synthetic lethality targets. Our SSO-QPOP analyses revealed that simultaneous attenuation of CHK1 and BRD4 function is an effective combination specific in MYC-deregulated HCC, successfully suppressing HCC progression in vitro. Pharmacological inhibitors of CHK1 and BRD4 further demonstrated its translational value by exhibiting synergistic interactions in patient-derived xenograft organoid models of HCC harboring high levels of MYC deregulation. Collectively, our work demonstrates the capacity of SSO-QPOP as a target prioritization tool in the drug development pipeline, as well as the therapeutic potential of CHK1 and BRD4 in MYC-driven HCC.

11.
Clin Mol Hepatol ; 29(2): 277-292, 2023 04.
Article in English | MEDLINE | ID: mdl-36710606

ABSTRACT

Even though the combined use of ultrasound (US) and alpha-fetoprotein (AFP) is recommended for the surveillance of hepatocellular carcinoma (HCC), the utilization of AFP has its challenges, including accuracy dependent on its cut-off levels, degree of liver necroinflammation, and etiology of liver disease. Though various studies have demonstrated the utility of protein induced by vitamin K absence II (PIVKA-II) in surveillance, treatment monitoring, and predicting recurrence, it is still not recommended as a routine biomarker test. A panel of 17 experts from Asia-Pacific, gathered to discuss and reach a consensus on the clinical usefulness and value of PIVKA-II for the surveillance and treatment monitoring of HCC, based on six predetermined statements. The experts agreed that PIVKA-II was valuable in the detection of HCC in AFP-negative patients, and could potentially benefit detection of early HCC in combination with AFP. PIVKA-II is clinically useful for monitoring curative and intra-arterial locoregional treatments, outcomes, and recurrence, and could potentially predict microvascular invasion risk and facilitate patient selection for liver transplant. However, combining PIVKA-II with US and AFP for HCC surveillance, including small HCC, still requires more evidence, whilst its role in detecting AFP-negative HCC will potentially increase as more patients are treated for hepatitis-related HCC. PIVKA-II in combination with AFP and US has a clinical role in the Asia-Pacific region for surveillance. However, implementation of PIVKA-II in the region will have some challenges, such as requiring standardization of cut-off values, its cost-effectiveness and improving awareness among healthcare providers.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/pathology , alpha-Fetoproteins , Liver Neoplasms/diagnosis , Liver Neoplasms/pathology , Vitamins , Biomarkers , Prothrombin/metabolism , Vitamin K , Biomarkers, Tumor
12.
J Hepatol ; 77(5): 1246-1255, 2022 11.
Article in English | MEDLINE | ID: mdl-35820507

ABSTRACT

BACKGROUND & AIMS: Several recent clinical studies have shown that serum homocysteine (Hcy) levels are positively correlated, while vitamin B12 (B12) and folate levels are negative correlated, with non-alcoholic steatohepatitis (NASH) severity. However, it is not known whether hyperhomocysteinemia (HHcy) plays a pathogenic role in NASH. METHODS: We examined the effects of HHcy on NASH progression, metabolism, and autophagy in dietary and genetic mouse models, patients, and primates. We employed vitamin B12 (B12) and folate (Fol) to reverse NASH features in mice and cell culture. RESULTS: Serum Hcy correlated with hepatic inflammation and fibrosis in NASH. Elevated hepatic Hcy induced and exacerbated NASH. Gene expression of hepatic Hcy-metabolizing enzymes was downregulated in NASH. Surprisingly, we found increased homocysteinylation (Hcy-lation) and ubiquitination of multiple hepatic proteins in NASH including the key autophagosome/lysosome fusion protein, Syntaxin 17 (Stx17). This protein was Hcy-lated and ubiquitinated, and its degradation led to a block in autophagy. Genetic manipulation of Stx17 revealed its critical role in regulating autophagy, inflammation and fibrosis during HHcy. Remarkably, dietary B12/Fol, which promotes enzymatic conversion of Hcy to methionine, decreased HHcy and hepatic Hcy-lated protein levels, restored Stx17 expression and autophagy, stimulated ß -oxidation of fatty acids, and improved hepatic histology in mice with pre-established NASH. CONCLUSIONS: HHcy plays a key role in the pathogenesis of NASH via Stx17 homocysteinylation. B12/folate also may represent a novel first-line therapy for NASH. LAY SUMMARY: The incidence of non-alcoholic steatohepatitis, for which there are no approved pharmacological therapies, is increasing, posing a significant healthcare challenge. Herein, based on studies in mice, primates and humans, we found that dietary supplementation with vitamin B12 and folate could have therapeutic potential for the prevention or treatment of non-alcoholic steatohepatitis.


Subject(s)
Hyperhomocysteinemia , Non-alcoholic Fatty Liver Disease , Animals , Fatty Acids , Fibrosis , Folic Acid , Homocysteine , Humans , Inflammation , Methionine , Mice , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/prevention & control , Qa-SNARE Proteins , Vitamin B 12 , Vitamins
13.
Clin Cancer Res ; 28(17): 3890-3901, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35763041

ABSTRACT

PURPOSE: SORAMIC is a randomized controlled trial in patients with advanced hepatocellular carcinoma (HCC) undergoing sorafenib ± selective internal radiation therapy (SIRT). We investigated the value of extracellular vesicle (EV)-based proteomics for treatment response prediction. EXPERIMENTAL DESIGN: The analysis population comprised 25 patients receiving SIRT+sorafenib and 20 patients receiving sorafenib alone. Patients were classified as responders or nonresponders based on changes in AFP and imaging or overall survival. Proteomic analysis was performed on plasma EVs by LC/MS, followed by bioinformatics analysis. Clinical relevance of candidate EV proteins was validated by survival and receiver-operating characteristic analysis with bootstrap internal sampling validation. Origin of circulating EV was explored by IHC staining of liver and tumor tissues and transcriptomics of blood cells. RESULTS: Proteomic analysis identified 56 and 27 EV proteins that were differentially expressed in plasma EVs between responders and nonresponders receiving SIRT+sorafenib and sorafenib alone, respectively. High EV-GPX3/ACTR3 and low EV-ARHGAP1 were identified as candidate biomarkers at baseline from the 13 responders to SIRT+sorafenib with statistically significant AUC = 1 for all and bootstrap P values 2.23 × 10-5, 2.22 × 10-5, and 2.23 × 10-5, respectively. These patients showed reduced abundance of EV-VPS13A and EV-KALRN 6 to 9 weeks after combined treatment with significant AUC and bootstrap P values. In reverse, low GPX3 and high ARHGAP1 demonstrated better response to sorafenib monotherapy with AUC = 0.9697 and 0.9192 as well as bootstrap P values 8.34 × 10-5 and 7.98 × 10-4, respectively. HCC tumor was the likely origin of circulating EVs. CONCLUSIONS: In this exploratory study, EV-based proteomics predicted response to SIRT+sorafenib and sorafenib-only treatment in patients with advanced HCC of metabolic origin.


Subject(s)
Carcinoma, Hepatocellular , Extracellular Vesicles , Liver Neoplasms , Sorafenib , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/radiotherapy , Extracellular Vesicles/pathology , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/radiotherapy , Niacinamide/therapeutic use , Phenylurea Compounds/therapeutic use , Proteomics , Sorafenib/therapeutic use
14.
Natl Sci Rev ; 9(3): nwab192, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35382356

ABSTRACT

Intra-tumor heterogeneity (ITH) is a key challenge in cancer treatment, but previous studies have focused mainly on the genomic alterations without exploring phenotypic (transcriptomic and immune) heterogeneity. Using one of the largest prospective surgical cohorts for hepatocellular carcinoma (HCC) with multi-region sampling, we sequenced whole genomes and paired transcriptomes from 67 HCC patients (331 samples). We found that while genomic ITH was rather constant across stages, phenotypic ITH had a very different trajectory and quickly diversified in stage II patients. Most strikingly, 30% of patients were found to contain more than one transcriptomic subtype within a single tumor. Such phenotypic ITH was found to be much more informative in predicting patient survival than genomic ITH and explains the poor efficacy of single-target systemic therapies in HCC. Taken together, we not only revealed an unprecedentedly dynamic landscape of phenotypic heterogeneity in HCC, but also highlighted the importance of studying phenotypic evolution across cancer types.

15.
Biomaterials ; 284: 121527, 2022 05.
Article in English | MEDLINE | ID: mdl-35483200

ABSTRACT

Hepatocellular carcinoma (HCC) is the sixth most common cancer and the second leading cause of cancer worldwide. Despite approvals of several therapeutics to treat advanced HCC in the past few years, the impact of anti-angiogenic treatment on HCC patient overall survival remains limited. This suggests there may be alternative, perfusion-independent roles of endothelial cells that support tumor progression. Thus, we leveraged a well-defined hydrogel system to establish co-culture models to mimic and characterize the angiocrine crosstalk between HCC and endothelial cells in vitro. Co-cultures of HCC cell lines or patient-derived xenograft organoids with endothelial cells exhibited the upregulation of MCP-1, IL-8 and CXCL16, suggesting that the HCC-endothelial interactions established in our models recapitulate known angiocrine signaling. Additionally, by subjecting co-cultures and mono-cultures to RNA sequencing, transcriptomic analysis revealed an upregulation in the expression of genes associated with tumor necrosis factor (TNF) signaling, such as that of chemokines, suggesting that endothelial cells induce HCC cells to generate an inflammatory microenvironment by recruiting immune cells. Finally, HCC-endothelial angiocrine crosstalk in the co-culture models polarized macrophages towards a pro-inflammatory and pro-angiogenic phenotype, paralleling a tumor-associated macrophage subset previously reported in HCC. Together, these findings suggest that these HCC-endothelial co-culture models may serve as important models to understand and target the interplay between angiogenesis and the immune milieu.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Coculture Techniques , Endothelial Cells/metabolism , Humans , Liver Neoplasms/pathology , Organoids/metabolism , Tumor Microenvironment
16.
PLoS One ; 16(12): e0251998, 2021.
Article in English | MEDLINE | ID: mdl-34855773

ABSTRACT

To test the safety and efficacy of drugs via a high does drug heat map, a multi-spheroids array chip was developed by adopting a micropillar and microwell structure. In the chip, patient-derived cells were encapsulated in alginate and grown to maturity for more than 7 days to form cancer multi-spheroids. Multi-spheroids grown in conventional well plates require many cells and are easily damaged as a result of multiple pipetting during maintenance culture or experimental procedures. To address these issues, we applied a micropillar and microwell structure to the multi-spheroids array. Patient-derived cells from patients with Glioblastoma (GBM), the most common and lethal form of central nervous system cancer, were used to validate the array chip performance. After forming multi-spheroids with a diameter greater than 100µm in a 12×36 pillar array chip (25mm × 75mm), we tested 70 drug compounds (6 replicates) using a high-dose to determine safety and efficacy for drug candidates. Comparing the drug response of multi-spheroids derived from normal cells and cancer cells, we found that four compounds (Dacomitinib, Cediranib, LY2835219, BGJ398) did not show toxicity to astrocyte cell and were efficacious to patient-derived GBM cells.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor/methods , Glioblastoma/drug therapy , High-Throughput Screening Assays/methods , Spheroids, Cellular/drug effects , Astrocytes , Cells, Cultured , Humans , Primary Cell Culture , Spheroids, Cellular/cytology
17.
J Hepatocell Carcinoma ; 8: 1159-1167, 2021.
Article in English | MEDLINE | ID: mdl-34589445

ABSTRACT

PURPOSE: The COVID-19 pandemic has altered healthcare priorities which may adversely impact cancer management. We aimed to evaluate the impact of the pandemic on the diagnosis, treatment, and consultation methods for patients with hepatocellular carcinoma (HCC). PATIENTS AND METHODS: We conducted a survey among 27 hospitals from 14 Asia-Pacific countries, collecting hospital-level information on the number of newly diagnosed HCC cases during a pre-pandemic period (February to May 2019) and for the same period during the pandemic (February to May 2020). Information was also collected on delays in diagnosis and treatment, changes in treatment modalities and complication rates, changes in patient enrollment in clinical trials, and modes of patient consultation. The information was stratified by the Barcelona Clinic Liver Cancer (BCLC) stage. RESULTS: The survey included cohorts of 2789 and 2045 patients newly diagnosed with HCC during the pre- and pandemic period, respectively. A decline of 26.7% in new HCC cases was reported during the pandemic compared to the pre-pandemic. A sizable proportion of institutions reported delays in diagnosis (48.2% in BCLC 0/A/B and 51.9% in BCLC C), delays in treatment (66.7% in BCLC 0/A/B and 63.0% in BCLC C), changes in treatment modality (33.3% in BCLC 0/A/B and 18.5% in BCLC C), an increase in treatment complications (about 15% across all BCLC stages), and no growth in clinical trial enrollments during the pandemic. Furthermore, there was a decline of 27.3% in face-to-face patient consultations and an increase of 18.3% in video/telephonic consultations during the pandemic. A considerable variation in changes in HCC management was observed among countries. CONCLUSION: The COVID-19 pandemic has significantly impacted the management of HCC among Asia-Pacific countries. The impact varies according to the disease stage and country. Well thought-through long-term strategies are required to ameliorate the negative impact of the pandemic on HCC patients.

18.
Molecules ; 26(16)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34443536

ABSTRACT

A common method of three-dimensional (3D) cell cultures is embedding single cells in Matrigel. Separated cells in Matrigel migrate or grow to form spheroids but lack cell-to-cell interaction, which causes difficulty or delay in forming mature spheroids. To address this issue, we proposed a 3D aggregated spheroid model (ASM) to create large single spheroids by aggregating cells in Matrigel attached to the surface of 96-pillar plates. Before gelling the Matrigel, we placed the pillar inserts into blank wells where gravity allowed the cells to gather at the curved end. In a drug screening assay, the ASM with Hepatocellular carcinoma (HCC) cell lines showed higher drug resistance compared to both a conventional spheroid model (CSM) and a two-dimensional (2D) cell culture model. With protein expression, cytokine activation, and penetration analysis, the ASM showed higher expression of cancer markers associated with proliferation (p-AKT, p-Erk), tight junction formation (Fibronectin, ZO-1, Occludin), and epithelial cell identity (E-cadherin) in HCC cells. Furthermore, cytokine factors were increased, which were associated with immune cell recruitment/activation (MIF-3α), extracellular matrix regulation (TIMP-2), cancer interaction (IL-8, TGF-ß2), and angiogenesis regulation (VEGF-A). Compared to CSM, the ASM also showed limited drug penetration in doxorubicin, which appears in tissues in vivo. Thus, the proposed ASM better recapitulated the tumor microenvironment and can provide for more instructive data during in vitro drug screening assays of tumor cells and improved prediction of efficacious drugs in HCC patients.


Subject(s)
Carcinoma, Hepatocellular/pathology , Imaging, Three-Dimensional , Liver Neoplasms/pathology , Models, Biological , Spheroids, Cellular/pathology , Antineoplastic Agents/analysis , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Cell Aggregation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cytokines/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Fluorescence , High-Throughput Screening Assays , Humans , Reproducibility of Results , Spheroids, Cellular/drug effects , Tight Junction Proteins/metabolism
19.
Immunity ; 54(8): 1883-1900.e5, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34331874

ABSTRACT

Mononuclear phagocytes (MNPs) encompass dendritic cells, monocytes, and macrophages (MoMac), which exhibit antimicrobial, homeostatic, and immunoregulatory functions. We integrated 178,651 MNPs from 13 tissues across 41 datasets to generate a MNP single-cell RNA compendium (MNP-VERSE), a publicly available tool to map MNPs and define conserved gene signatures of MNP populations. Next, we generated a MoMac-focused compendium that revealed an array of specialized cell subsets widely distributed across multiple tissues. Specific pathological forms were expanded in cancer and inflammation. All neoplastic tissues contained conserved tumor-associated macrophage populations. In particular, we focused on IL4I1+CD274(PD-L1)+IDO1+ macrophages, which accumulated in the tumor periphery in a T cell-dependent manner via interferon-γ (IFN-γ) and CD40/CD40L-induced maturation from IFN-primed monocytes. IL4I1_Macs exhibited immunosuppressive characteristics through tryptophan degradation and promoted the entry of regulatory T cell into tumors. This integrated analysis provides a robust online-available platform for uniform annotation and dissection of specific macrophage functions in healthy and pathological states.


Subject(s)
Dendritic Cells/immunology , Gene Expression/immunology , Monocytes/immunology , Transcriptome/genetics , Tumor-Associated Macrophages/immunology , Arthritis, Rheumatoid/immunology , COVID-19/immunology , Gene Expression/genetics , Gene Expression Profiling , Humans , Interferon-gamma/immunology , L-Amino Acid Oxidase/metabolism , Liver Cirrhosis/immunology , Macrophages/immunology , Neoplasms/immunology , RNA, Small Cytoplasmic/genetics , Single-Cell Analysis , T-Lymphocytes, Regulatory/immunology , Transcriptome/immunology
20.
Mol Ther ; 29(11): 3258-3273, 2021 11 03.
Article in English | MEDLINE | ID: mdl-33974998

ABSTRACT

Dysregulated adenosine-to-inosine (A-to-I) RNA editing is implicated in various cancers. However, no available RNA editing inhibitors have so far been developed to inhibit cancer-associated RNA editing events. Here, we decipher the RNA secondary structure of antizyme inhibitor 1 (AZIN1), one of the best-studied A-to-I editing targets in cancer, by locating its editing site complementary sequence (ECS) at the 3' end of exon 12. Chemically modified antisense oligonucleotides (ASOs) that target the editing region of AZIN1 caused a substantial exon 11 skipping, whereas ECS-targeting ASOs effectively abolished AZIN1 editing without affecting splicing and translation. We demonstrate that complete 2'-O-methyl (2'-O-Me) sugar ring modification in combination with partial phosphorothioate (PS) backbone modification may be an optimal chemistry for editing inhibition. ASO3.2, which targets the ECS, specifically inhibits cancer cell viability in vitro and tumor incidence and growth in xenograft models. Our results demonstrate that this AZIN1-targeting, ASO-based therapeutics may be applicable to a wide range of tumor types.


Subject(s)
Carrier Proteins/genetics , Gene Targeting , RNA Editing , Animals , Base Sequence , Cell Line, Tumor , Cell Proliferation , Cell Survival/genetics , Disease Models, Animal , Exons , Gene Expression Regulation, Neoplastic , Gene Targeting/methods , Genetic Therapy/methods , Humans , Mice , Neoplasms/genetics , Neoplasms/therapy , Oligonucleotides, Antisense/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...