Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Nat Microbiol ; 9(4): 949-963, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38528148

ABSTRACT

A polymorphism causing deficiencies in Toll-interacting protein (TOLLIP), an inhibitory adaptor protein affecting endosomal trafficking, is associated with increased tuberculosis (TB) risk. It is, however, unclear how TOLLIP affects TB pathogenesis. Here we show that TB severity is increased in Tollip-/- mice, characterized by macrophage- and T cell-driven inflammation, foam cell formation and lipid accumulation. Tollip-/- alveolar macrophages (AM) specifically accumulated lipid and underwent necrosis. Transcriptional and protein analyses of Mycobacterium tuberculosis (Mtb)-infected, Tollip-/- AM revealed increased EIF2 signalling and downstream upregulation of the integrated stress response (ISR). These phenotypes were linked, as incubation of the Mtb lipid mycolic acid with Mtb-infected Tollip-/- AM activated the ISR and increased Mtb replication. Correspondingly, the ISR inhibitor, ISRIB, reduced Mtb numbers in AM and improved Mtb control, overcoming the inflammatory phenotype. In conclusion, targeting the ISR offers a promising target for host-directed anti-TB therapy towards improved Mtb control and reduced immunopathology.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , Macrophages, Alveolar/microbiology , Tuberculosis/microbiology , Mycobacterium tuberculosis/physiology , Macrophages/microbiology , Lipids , Intracellular Signaling Peptides and Proteins/metabolism
2.
FASEB Bioadv ; 6(1): 12-25, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223200

ABSTRACT

Variations in the Toll-interacting protein (TOLLIP) gene have been identified in genome-wide association studies to correlate with risk of disease, mortality, and response to N-acetylcysteine therapy in idiopathic pulmonary fibrosis. Although TOLLIP is known to modulate innate immune responses, its relevance in organ fibrogenesis remains unknown. Prior work in the literature suggests TOLLIP dampens transforming growth factor beta (TGFß) signaling in human cell lines. In this study, we examined the role of TOLLIP in mouse lung fibroblast (MLF) responses to TGFß and in the bleomycin model of experimental lung fibrosis using Tollip-/- mice. We hypothesize that if TOLLIP negatively regulates TGFß signaling, then Tollip-/- mouse lung fibroblasts (MLFs) would have enhanced response to TGFß treatment, and Tollip-/- mice would develop increased fibrosis following bleomycin challenge. Primary MLFs were stimulated with TGFß (1 ng/mL) for 24 h. RNA was obtained to assess global transcriptional responses by RNA-seq and markers of myofibroblast transition by qPCR. Functional assessment of TGFß-stimulated MLFs included cell migration by scratch assay, cell proliferation, and matrix invasion through Matrigel. In the in vivo model of lung fibrosis, Tollip-/- mice and wild-type (WT) littermates were administered bleomycin intratracheally and assessed for fibrosis. We further examined TGFß signaling in vivo after bleomycin injury by SMAD2, ERK1/2, and TGFßR1 Western blot. In response to TGFß treatment, both WT and Tollip-/- MLFs exhibited global transcriptional changes consistent with myofibroblast differentiation. However, Tollip-/- MLFs showed greater number of differentially expressed genes compared to WT MLFs and greater upregulation of Acta2 by qPCR. Functionally, Tollip-/- MLFs also exhibited increased migration and Matrigel invasiveness compared to WT. We found evidence of enhanced TGFß signaling in Tollip-/- through SMAD2 in vitro and in vivo. Tollip-/- mice experienced lower survival using a standard weight-adjusted dosing without evidence of differences in fibrosis at Day 21. With adjustment of dosing for sex, no differences were observed in fibrosis at Day 21. However, Tollip-/- mice had greater weight loss and increased bronchoalveolar lavage fluid total protein during early resolution at Day 14 compared to WT without evidence of differences in acute lung injury at Day 7, suggesting impaired resolution of lung injury.

3.
Immunohorizons ; 7(12): 853-860, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38099934

ABSTRACT

Innate immune cell populations are critical in asthma with different functional characteristics based on tissue location, which has amplified the importance of characterizing the precise number and location of innate immune populations in murine models of asthma. In this study, we performed premortem intravascular (IV) labeling of leukocytes in mice in two models of asthma to differentiate innate immune cell populations within the IV compartment versus those residing in the lung tissue or airway lumen. We performed spectral flow cytometry analysis of the blood, suspensions of digested lung tissue, and bronchoalveolar lavage fluid. We discovered that IV labeled leukocytes do not contaminate analysis of bronchoalveolar lavage fluid but represent a significant proportion of cells in digested lung tissue. Exclusion of IV leukocytes significantly improved the accuracy of the assessments of myeloid cells in the lung tissue and provided important insights into ongoing trafficking in both eosinophilic and neutrophilic asthma models.


Subject(s)
Allergens , Asthma , Animals , Mice , Leukocytes , Myeloid Cells , Inflammation , Lung
5.
Am J Physiol Lung Cell Mol Physiol ; 322(4): L607-L616, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35196901

ABSTRACT

We previously showed that pericyte-like cells derived from the FoxD1-lineage contribute to myofibroblasts following bleomycin-induced lung injury. However, their functional significance in lung fibrosis remains unknown. In this study, we used a model of lung pericyte-like cell ablation to test the hypothesis that pericyte-like cell ablation attenuates lung fibrosis in bleomycin-induced lung injury. Lung fibrosis was induced by intratracheal instillation of bleomycin. To ablate pericyte-like cells in the lung, diphtheria toxin (DT) was administered to Foxd1-Cre;Rosa26-iDTR mice at two different phases of bleomycin-induced lung injury. For early ablation, we coadministered bleomycin with DT and harvested mice at days 7 and 21. To test the effect of ablation after acute injury, we delivered DT 7 days after bleomycin administration. We assessed fibrosis by lung hydroxyproline content and semiquantitative analysis of picrosirius red staining. We performed bronchoalveolar lavage to determine cell count and differential. We also interrogated mRNA expression of fibrosis-related genes in whole lung RNA. Compared with DT-insensitive littermates where pericyte-like cells were not ablated, DT-sensitive animals exhibited no difference in fibrosis at day 21 both in the early and late pericyte ablation models. However, early ablation of pericytes reduced acute lung inflammation, as indicated by decreased inflammatory cells. Our data confirm a role for pericytes in regulating pulmonary inflammation in early lung injury.


Subject(s)
Lung Injury , Pulmonary Fibrosis , Animals , Bleomycin/pharmacology , Bronchoalveolar Lavage Fluid , Hydroxyproline , Lung/metabolism , Lung Injury/chemically induced , Lung Injury/pathology , Lung Injury/therapy , Mice , Mice, Inbred C57BL , Pericytes/metabolism , Pulmonary Fibrosis/pathology
6.
PLoS One ; 16(6): e0253260, 2021.
Article in English | MEDLINE | ID: mdl-34138914

ABSTRACT

We have previously reported that the 26-amino acid N-terminus stalk region of soluble Fas ligand (sFasL), which is separate from its binding site, is required for its biological function. Here we investigate the mechanisms that link the structure of the sFasL stalk region with its function. Using site-directed mutagenesis we cloned a mutant form of sFasL in which all the charged amino acids of the stalk region were changed to neutral alanines (mut-sFasL). We used the Fas-sensitive Jurkat T-cell line and mouse and human alveolar epithelial cells to test the bioactivity of sFasL complexes, using caspase-3 activity and Annexin-V externalization as readouts. Finally, we tested the effects of mut-sFasL on lipopolysaccharide-induced lung injury in mice. We found that mutation of all the 8 charged amino acids of the stalk region into the non-charged amino acid alanine (mut-sFasL) resulted in reduced apoptotic activity compared to wild type sFasL (WT-sFasL). The mut-sFasL attenuated WT-sFasL function on the Fas-sensitive human T-cell line Jurkat and on primary human small airway epithelial cells. The inhibitory mechanism was associated with the formation of complexes of mut-sFasL with the WT protein. Intratracheal administration of the mut-sFasL to mice 24 hours after intratracheal Escherichia coli lipopolysaccharide resulted in attenuation of the inflammatory response 24 hours later. Therefore, the stalk region of sFasL has a critical role on bioactivity, and changes in the structure of the stalk region can result in mutant variants that interfere with the wild type protein function in vitro and in vivo.


Subject(s)
Alveolar Epithelial Cells/metabolism , Amino Acids/metabolism , Fas Ligand Protein/metabolism , Animals , Binding Sites/physiology , Humans , Jurkat Cells , Mice
7.
FASEB J ; 35(4): e21323, 2021 04.
Article in English | MEDLINE | ID: mdl-33710674

ABSTRACT

We previously reported on the role of pericyte-like cells as functional sentinel immune cells in lung injury. However, much about the biological role of pericytes in lung injury remains unknown. Lung pericyte-like cells are well-positioned to sense disruption to the epithelial barrier and coordinate local inflammatory responses due to their anatomic niche within the alveoli. In this report, we characterized transcriptional responses and functional changes in pericyte-like cells following activation by alveolar components from injured and uninjured lungs in a mouse model of acute lung injury (ALI). Purified pericyte-like cells from lung digests using PDGFRß as a selection marker were expanded in culture as previously described (1). We induced sterile acute lung injury in mice with recombinant human Fas ligand (rhFasL) instillation followed by mechanical ventilation (1). We then collected bronchoalveolar lavage fluid (BALF) from injured and uninjured mice. Purified pericyte-like cells in culture were exposed to growth media only (control), BALF from uninjured mice, and BALF from injured mice for 6 and 24 hours. RNA collected from these treatment conditions were processed for RNAseq. Targets of interest identified by pathway analysis were validated using in vitro and in vivo assays. We observed robust global transcriptional changes in pericyte-like cells following treatment with uninjured and injured BALF at 6 hours, but this response persisted for 24 hours only after exposure to injured BALF. Functional enrichment analysis of pericytes treated with injured BALF revealed the activation of pro-inflammatory, cell migration, and angiogenesis-related pathways, whereas processes associated with tissue development and cell differentiation were down-regulated. We validated select upregulated targets in the inflammatory, angiogenic, and cell migratory pathways using functional biological assays in vitro and in vivo. We conclude that lung pericyte-like cells are highly responsive to alveolar compartment content from both uninjured and injured lungs, but injured BALF elicits a more sustained response. The inflammatory, angiogenic, and migratory changes exhibited by activated pericyte-like cells underscore the phenotypic plasticity of these specialized stromal cells in the setting of acute lung injury.


Subject(s)
Acute Lung Injury/chemically induced , Fas Ligand Protein/toxicity , Pericytes/physiology , Transcription, Genetic/physiology , Angiopoietin-Like Protein 1 , Angiopoietin-like Proteins/genetics , Angiopoietin-like Proteins/metabolism , Animals , Biomarkers/metabolism , Bronchoalveolar Lavage Fluid , Cell Migration Assays , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Humans , Inflammation/metabolism , Macrophages , Male , Mice , Mice, Inbred C57BL , RNA Interference , RNA, Small Interfering , Recombinant Proteins
8.
PLoS One ; 13(5): e0197937, 2018.
Article in English | MEDLINE | ID: mdl-29813125

ABSTRACT

BACKGROUND: Integrin α8 (ITGA8) heterodimerizes with integrin ß1 and is highly expressed in stromal cells of the lung. Platelet-derived growth factor receptor beta (PDGFRß+) cells constitute a major population of contractile myofibroblasts in the lung following bleomycin-induced fibrosis. Integrin α8ß1 is upregulated in fibrotic foci in bleomycin-induced lung injury. However, the functional role of ITGA8 in fibrogenesis has not been characterized. In this study, we examined whether genetic deletion of ITGA8 from PDGFRß+ cells in the lung altered fibrosis. METHODS: Pdgfrb-Cre/+;Itga8flox/- or Pdgfrb-Cre/+;Itga8flox/flox (Cre+) and control mice (Cre-) were used for in vitro and in vivo studies. Primary cultures of PDGFRß+ cells were exposed to TGFß, followed by RNA isolation for qPCR. For in vivo studies, Cre+ and Cre- mice were characterized at baseline and after bleomycin-induced fibrosis. RESULTS: PDGFRß-selected cells from Cre+ animals showed higher levels of Col1a1 expression after treatment with TGFß. However, Cre- and Cre+ animals showed no significant difference in measures of acute lung injury or fibrosis following bleomycin challenge. CONCLUSION: While ITGA8 deletion in lung PDGFRß+ stromal cells showed evidence of greater Col1a1 mRNA expression after TGFß treatment in vitro, no functional difference was detected in vivo.


Subject(s)
Integrin alpha Chains/metabolism , Pulmonary Fibrosis/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Disease Models, Animal , Female , Gene Deletion , Integrin alpha Chains/deficiency , Integrin alpha Chains/genetics , Mice , Pulmonary Fibrosis/genetics , Up-Regulation
9.
Am J Respir Cell Mol Biol ; 56(2): 160-167, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27779900

ABSTRACT

We demonstrated previously that FoxD1-derived cells in the lung are enriched in pericyte-like cells in mouse lung. These cells express the common pericyte markers and are located adjacent to endothelial cells. In this study, we demonstrate the feasibility of administering diphtheria toxin (DT) by oropharyngeal aspiration as an approach to ablating FoxD1-derived cells. We crossed mice expressing Cre-recombinase under the FoxD1 promoter to Rosa26-loxP-STOP-loxP-iDTR mice and generated a bitransgenic line (FoxD1-Cre;Rs26-iDTR) in which FoxD1-derived cells heritably express simian or human diphtheria toxin receptor and are sensitive to DT. We delivered low-dose (0.5 ng/g) and high-dose (1ng/g × 2) to FoxD1-Cre;Rs26-iDTR mice and littermate control mice by oropharyngeal aspiration and evaluated ablation by flow cytometry and immunohistochemistry. FoxD1-Cre mice showed a 40-50% reduction in PDGFRß+ cells by flow cytometry at Days 2 and 7 after DT administration, with a return of PDGFRß+ cells at Day 28. Confocal microscopy revealed an observable reduction in pericyte markers. Bronchoalveolar lavage fluid analysis revealed no significant differences in total protein, bronchoalveolar lavage fluid red blood cell, or white blood cell counts at low dose. However, at high-dose DT, there was a proinflammatory effect in the control mice and increased mortality associated with systemic toxicity in Cre+ mice. Low-dose DT reduced lung PDGFRß+ stromal cells in the FoxD1-Cre;iDTR transgenic model without a differential effect on lung inflammation in DT-sensitive and DT-insensitive animals. Low-dose DT is a viable method for transient lineage-specific stromal cell ablation in the lung that minimizes systemic toxicity.


Subject(s)
Diphtheria Toxin/administration & dosage , Lung/cytology , Mouth/physiology , Pericytes/cytology , Pharynx/physiology , Suction/methods , Animals , Bronchoalveolar Lavage Fluid , Capillary Permeability/drug effects , Diphtheria Toxin/pharmacology , Mice, Transgenic , Models, Animal , Pericytes/drug effects , Receptor, Platelet-Derived Growth Factor beta/metabolism , Stromal Cells/drug effects , Stromal Cells/metabolism
10.
PLoS One ; 9(3): e92660, 2014.
Article in English | MEDLINE | ID: mdl-24663959

ABSTRACT

Optimal skin wound healing relies on tight balance between collagen synthesis and degradation in new tissue formation and remodeling phases. The endocytic receptor uPARAP regulates collagen uptake and intracellular degradation. In this study we examined cutaneous wound repair response of uPARAP null (uPARAP-/-) mice. Full thickness wounds were created on dorsal surface of uPARAP-/- or their wildtype littermates. Wound healing evaluation was done by macroscopic observation, histology, gene transcription and biochemical analysis at specific intervals. We found that absence of uPARAP delayed re-epithelialization during wound closure, and altered stiffness of the scar tissue. Despite the absence of the uPARAP-mediated intracellular pathway for collagen degradation, there was no difference in total collagen content of the wounds in uPARAP-/- compared to wildtype mice. This suggests in the absence of uPARAP, a compensatory feedback mechanism functions to keep net collagen in balance.


Subject(s)
Membrane Glycoproteins/metabolism , Receptors, Cell Surface/metabolism , Skin Physiological Phenomena , Skin/metabolism , Wound Healing , Animals , Biomechanical Phenomena , Collagen/metabolism , Epithelial Cells/cytology , Gene Expression Regulation , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/genetics , Skin/cytology
11.
Am J Physiol Lung Cell Mol Physiol ; 306(1): L35-42, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24213920

ABSTRACT

The lung is an important reservoir of human immunodeficiency virus (HIV). Individuals infected with HIV are more prone to pulmonary infections and chronic lung disorders. We hypothesized that comprehensively profiling the proteomic landscape of bronchoalveolar lavage fluid (BALF) in patients with HIV would provide insights into how this virus alters the lung milieu and contributes to pathogenesis of HIV-related lung diseases. BALF was obtained from five HIV-negative (HIV(-)) and six asymptomatic HIV-positive (HIV(+)) subjects not on antiretroviral therapy. Each sample underwent shotgun proteomic analysis based on HPLC-tandem mass spectrometry. Differentially expressed proteins between the groups were identified using statistical methods based on spectral counting. Mechanisms of disease were explored using functional annotation to identify overlapping and distinct pathways enriched between the BALF proteome of HIV(+) and HIV(-) subjects. We identified a total of 318 unique proteins in BALF of HIV(-) and HIV(+) subjects. Of these, 87 were differentially up- or downregulated between the two groups. Many of these differentially expressed proteins are known to interact with key HIV proteins. Functional analysis of differentially regulated proteins implicated downregulation of immune responses in lungs of HIV(+) patients. Combining shotgun proteomic analysis with computational methods demonstrated that the BALF proteome is significantly altered during HIV infection. We found that immunity-related pathways are underrepresented in HIV(+) patients. These findings implicate mechanisms whereby HIV invokes local immunosuppression in the lung and increases the susceptibility of HIV(+) patients to develop a wide range of infectious and noninfectious pulmonary diseases.


Subject(s)
HIV Infections/metabolism , HIV-1 , Proteome/metabolism , Adult , Bronchoalveolar Lavage Fluid , Case-Control Studies , Cytokines/metabolism , Female , Host-Pathogen Interactions , Humans , Lung/metabolism , Lung/virology , Male , Middle Aged , Young Adult
12.
Am J Respir Crit Care Med ; 188(7): 820-30, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23924232

ABSTRACT

RATIONALE: The origin of cells that make pathologic fibrillar collagen matrix in lung disease has been controversial. Recent studies suggest mesenchymal cells may contribute directly to fibrosis. OBJECTIVES: To characterize discrete populations of mesenchymal cells in the normal mouse lung and to map their fate after bleomycin-induced lung injury. METHODS: We mapped the fate of Foxd1-expressing embryonic progenitors and their progeny during lung development, adult homeostasis, and after fibrosing injury in Foxd1-Cre; Rs26-tdTomato-R mice. We studied collagen-I(α)1-producing cells in normal and diseased lungs using Coll-GFP(Tg) mice. MEASUREMENTS AND MAIN RESULTS: Foxd1-expressing embryonic progenitors enter lung buds before 13.5 days post-conception, expand, and form an extensive lineage of mesenchymal cells that have characteristics of pericytes. A collagen-I(α)1-expressing mesenchymal population of distinct lineage is also found in adult lung, with features of a resident fibroblast. In contrast to resident fibroblasts, Foxd1 progenitor-derived pericytes are enriched in transcripts for innate immunity, vascular development, WNT signaling pathway, and cell migration. Foxd1 progenitor-derived pericytes expand after bleomycin lung injury, and activate expression of collagen-I(α)1 and the myofibroblast marker αSMA in fibrotic foci. In addition, our studies suggest a distinct lineage of collagen-I(α)1-expressing resident fibroblasts that also expands after lung injury is a second major source of myofibroblasts. CONCLUSIONS: We conclude that the lung contains an extensive population of Foxd1 progenitor-derived pericytes that are an important lung myofibroblast precursor population.


Subject(s)
Bleomycin/adverse effects , Forkhead Transcription Factors/drug effects , Lung Injury/chemically induced , Mesenchymal Stem Cells/drug effects , Pericytes/pathology , Pulmonary Fibrosis/pathology , Animals , Lung Injury/pathology , Mesenchymal Stem Cells/physiology , Mice , Myofibroblasts/drug effects , Pericytes/drug effects , Pulmonary Fibrosis/chemically induced
13.
PLoS One ; 8(3): e58782, 2013.
Article in English | MEDLINE | ID: mdl-23505561

ABSTRACT

RATIONALE: Ventilator-associated pneumonia (VAP) is a common complication in patients with acute lung injury (ALI) and can lead to increased morbidity and mortality. Identifying protein profiles specific to VAP in bronchoalveolar lavage fluid (BALF) may aid in earlier diagnosis, elucidate mechanisms of disease, and identify putative targets for therapeutic intervention. METHODS: BALF was obtained from 5 normal subjects and 30 ALI patients: 14 with VAP (VAP(+)) and 16 without VAP (VAP(-)). Each sample underwent shotgun proteomic analysis based on tandem mass spectrometry. Differentially expressed proteins between the groups were identified using statistical methods based on spectral counting. Mechanisms of disease were explored using functional annotation and protein interaction network analysis. Supervised classification algorithms were implemented to discover a proteomic classifier for identifying critically ill patients with VAP. RESULTS: ALI patients had distinct BALF proteomic profiles compared to normal controls. Within the ALI group, we identified 76 differentially expressed proteins between VAP(+) and VAP(-). Functional analysis of these proteins suggested activation of pro-inflammatory pathways during VAP. We identified and validated a limited proteomic signature that discriminated VAP(+) from VAP(-) patients comprised of three proteins: S100A8, lactotransferrin (LTF), and actinin 1 (ACTN1). CONCLUSIONS: Combining proteomic with computational analyses is a powerful approach to study the BALF proteome during lung injury and development of VAP. This integrative methodology is a promising strategy to differentiate clinically relevant subsets of ALI patients, including those suffering from VAP.


Subject(s)
Bronchoalveolar Lavage Fluid/chemistry , Pneumonia, Ventilator-Associated/metabolism , Proteome , Proteomics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cluster Analysis , Critical Illness , Female , Gene Expression Regulation , Humans , Male , Middle Aged , Pneumonia, Ventilator-Associated/genetics , Protein Interaction Mapping , Protein Interaction Maps , Reproducibility of Results , Young Adult
14.
Biomaterials ; 33(28): 6889-97, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22770567

ABSTRACT

Targeting cell populations via endogenous carbohydrate receptors is an appealing approach for drug delivery. However, to be effective, this strategy requires the production of high affinity carbohydrate ligands capable of engaging with specific cell-surface lectins. To develop materials that exhibit high affinity towards these receptors, we synthesized glycopolymers displaying pendent carbohydrate moieties from carbohydrate-functionalized monomer precursors via reversible addition-fragmentation chain transfer (RAFT) polymerization. These glycopolymers were fluorescently labeled and used to determine macrophage-specific targeting both in vitro and in vivo. Mannose- and N-acetylglucosamine-containing glycopolymers were shown to specifically target mouse bone marrow-derived macrophages (BMDMs) in vitro in a dose-dependent manner as compared to a galactose-containing glycopolymer (30- and 19-fold higher uptake, respectively). In addition, upon macrophage differentiation, the mannose glycopolymer exhibited enhanced uptake in M2-polarized macrophages, an anti-inflammatory macrophage phenotype prevalent in injured tissue. This carbohydrate-specific uptake was retained in vivo, as alveolar macrophages demonstrated 6-fold higher internalization of mannose glycopolymer, as compared to galactose, following intratracheal administration in mice. We have shown the successful synthesis of a class of functional RAFT glycopolymers capable of macrophage-type specific uptake both in vitro and in vivo, with significant implications for the design of future targeted drug delivery systems.


Subject(s)
Acetylglucosamine/analogs & derivatives , Drug Carriers/administration & dosage , Macrophages, Alveolar/metabolism , Mannose/analogs & derivatives , Receptors, Cell Surface/metabolism , Acetylglucosamine/metabolism , Administration, Inhalation , Agglutination/drug effects , Analysis of Variance , Animals , Cells, Cultured , Drug Carriers/chemistry , Drug Carriers/metabolism , Maleimides/chemistry , Mannose/metabolism , Mannose-Binding Lectins/metabolism , Mice , Mice, Inbred C57BL , Polymethacrylic Acids/administration & dosage , Polymethacrylic Acids/chemical synthesis , Spectrophotometry, Ultraviolet
15.
Am J Respir Cell Mol Biol ; 47(3): 372-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22493012

ABSTRACT

Insulin-like growth factor (IGF)-1 is increased in different models of acute lung injury, and is an important determinant of survival and proliferation in many cells. We previously demonstrated that treatment of mice with IGF-1 receptor-blocking antibody (A12) improved early survival in bleomycin-induced lung injury. We have now examined whether administration of A12 improved markers of lung injury in hyperoxia model of lung injury. C57BL/6 mice underwent intraperitoneal administration of A12 or control antibody (keyhole limpet hemocyanin [KLH]), then were exposed to 95% hyperoxia for 88-90 hours. Mice were killed and bronchoalveolar lavage (BAL) and lung tissue were obtained for analysis. Hyperoxia caused a significant increase in IGF levels in BAL and lung lysates. Peripheral blood neutrophils expressed IGF-1R at baseline and after hyperoxia. BAL neutrophils from hyperoxia-treated mice and patients with acute lung injury also expressed cell surface IGF-1R. A12-treated mice had significantly decreased polymorphonuclear cell (PMN) count in BAL compared with KLH control mice (P = 0.02). BAL from A12-treated mice demonstrated decreased PMN chemotactic activity compared with BAL from KLH-treated mice. Pretreatment of PMNs with A12 decreased their chemotactic response to BAL from hyperoxia-exposed mice. Furthermore, IGF-1 induced a dose-dependent chemotaxis of PMNs. There were no differences in other chemotactic cytokines in BAL, including CXCL1 and CXCL2. In summary, IGF blockade decreased PMN recruitment to the alveolar space in a mouse model of hyperoxia. Furthermore, the decrease in BAL PMNs was at least partially due to a direct effect of A12 on PMN chemotaxis.


Subject(s)
Hyperoxia/complications , Lung Injury/etiology , Somatomedins/antagonists & inhibitors , Animals , Bronchoalveolar Lavage Fluid , Chemotaxis, Leukocyte , Cytokines/metabolism , Female , Lung Injury/metabolism , Mice , Mice, Inbred C57BL , Somatomedins/metabolism
16.
AIDS Res Hum Retroviruses ; 28(12): 1557-60, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22394260

ABSTRACT

We recently reported a novel adhesion pathway in lymphocytes that is mediated by cyclin-dependent kinase (Cdk) 4 activity and mediates lymphocyte interactions with endothelial matrix. We now demonstrate that HIV-infected lymphocytes also use Cdk4 to mediate spontaneous adhesion to fibronectin and endothelial matrix. We further demonstrate that HIV-infected lymphocytes require Rap-1 activity for phorbol-stimulated adhesion. Understanding adhesion pathways used by HIV-infected lymphocytes may lead to interventions to regulate aberrant adhesion and migration.


Subject(s)
Cell Adhesion , Cyclin-Dependent Kinase 4/metabolism , Endothelial Cells/physiology , Fibronectins/metabolism , HIV/pathogenicity , Lymphocytes/physiology , Lymphocytes/virology , Cells, Cultured , Humans
17.
Am J Respir Cell Mol Biol ; 46(2): 233-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21940816

ABSTRACT

Urokinase plasminogen activator receptor-associated protein (uPARAP, or Endo180) is a transmembrane endocytic receptor that mediates collagen internalization and degradation. uPARAP may be a novel pathway for collagen turnover and matrix remodeling in the lung. The function of uPARAP in lung injury has not been described. We analyzed the pulmonary mechanics of uPARAP(-/-) and wild-type mice at baseline and examined their response after bleomycin instillation. We compared collagen internalization in primary mouse lung fibroblasts (MLFs) from wild-type and uPARAP(-/-) mice using flow cytometry and fluorescent microscopy, and we examined the role of cytokines in regulating uPARAP expression and collagen internalization. We show that uPARAP is highly expressed in the lung, and that uPARAP(-/-) mice have increased lung elastance at baseline and after injury. uPARAP(-/-) mice are protected from changes in lung permeability after acute lung injury and have increased collagen content after bleomycin injury. uPARAP is the primary pathway for internalization of collagens in MLFs. Furthermore, collagen internalization through uPARAP does not require matrix metalloproteinase digestion and is independent of integrins. Mediators of lung injury, including transforming growth factor-ß, TNF-α, and IL-1, down-regulate both uPARAP expression and collagen internalization. uPARAP is highly expressed in the murine lung, and loss of uPARAP leads to differences in lung mechanics, lung permeability, and collagen content after injury. uPARAP is required for collagen internalization by MLFs. Thus, uPARAP is a novel pathway that regulates matrix remodeling in the lung after injury.


Subject(s)
Lung/physiology , Receptors, Urokinase Plasminogen Activator/physiology , Animals , Cytokines/physiology , Down-Regulation , Flow Cytometry , Inflammation Mediators/physiology , Mice , Mice, Knockout , Microscopy, Fluorescence , Receptors, Urokinase Plasminogen Activator/genetics
18.
Cell Cycle ; 9(24): 4922-30, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21150327

ABSTRACT

We recently described a new adhesion pathway in lymphocytes that is dependent on Cyclin-dependent kinase (Cdk) 4 activity and mediates lymphocyte interactions with endothelial matrix. We showed that Cdk4(-/-) mice had impaired recruitment of lymphocytes following bleomycin model of acute lung injury. In this study, we characterized the development and function of hematopoietic cells in Cdk4(-/-) mice and assessed the response of Cdk4(-/-) mice to allergen challenge. Cdk4(-/-) mice had hypoplastic thymuses with decreased total thymocyte cell numbers and increased CD4/CD8 double negative cells. Cdk4(-/-) bone marrow (BM) chimeric mice showed similar findings. Thymocytes from either Cdk4(-/-) or Cdk4(-/-) BM chimeric mice proliferated equally well as wild type controls in response to IL-2 activation. However Cdk4(-/-) thymocytes had decreased adhesion to both endothelial cell matrix and fibronectin compared to wildtype (WT) controls, whereas Cdk4(-/-) and WT splenocytes had similar adhesion. When Cdk4(-/-) BM chimeric mice and wild type BM chimeric mice were sensitized and challenged by intranasal administration of ovalbumin, we found no differences in allergic responses in the lung and airways between the two groups, as measured by inflammatory cell infiltrate, airway hyperreactivity, IgE levels and cytokine levels. In summary, we show that Cdk4 plays a previously unrecognized role in thymocyte maturation and adhesion, but is not required for thymocyte proliferation. In addition, Cdk4 is not required for lymphocyte trafficking to the lung following allergen sensitization and challenge.


Subject(s)
Cyclin-Dependent Kinase 4/immunology , Lymphocyte Activation/immunology , Lymphocytes/immunology , Allergens/immunology , Animals , Cell Adhesion/physiology , Cell Proliferation , Chimera , Cyclin-Dependent Kinase 4/genetics , Cytokines/immunology , Cytokines/metabolism , Mice , Mice, Knockout , Thymus Gland/cytology , Thymus Gland/immunology , Thymus Gland/pathology
19.
Respir Res ; 7: 26, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16480492

ABSTRACT

BACKGROUND: The cationic lipid Genzyme lipid (GL) 67 is the current "gold-standard" for in vivo lung gene transfer. Here, we assessed, if GL67 mediated uptake of siRNAs and asODNs into airway epithelium in vivo. METHODS: Anti-lacZ and ENaC (epithelial sodium channel) siRNA and asODN were complexed to GL67 and administered to the mouse airway epithelium in vivo Transfection efficiency and efficacy were assessed using real-time RT-PCR as well as through protein expression and functional studies. In parallel in vitro experiments were carried out to select the most efficient oligonucleotides. RESULTS: In vitro, GL67 efficiently complexed asODNs and siRNAs, and both were stable in exhaled breath condensate. Importantly, during in vitro selection of functional siRNA and asODN we noted that asODNs accumulated rapidly in the nuclei of transfected cells, whereas siRNAs remained in the cytoplasm, a pattern consistent with their presumed site of action. Following in vivo lung transfection siRNAs were only visible in alveolar macrophages, whereas asODN also transfected alveolar epithelial cells, but no significant uptake into conducting airway epithelial cells was seen. SiRNAs and asODNs targeted to beta-galactosidase reduced betagal mRNA levels in the airway epithelium of K18-lacZ mice by 30% and 60%, respectively. However, this was insufficient to reduce protein expression. In an attempt to increase transfection efficiency of the airway epithelium, we increased contact time of siRNA and asODN using the in vivo mouse nose model. Although highly variable and inefficient, transfection of airway epithelium with asODN, but not siRNA, was now seen. As asODNs more effectively transfected nasal airway epithelial cells, we assessed the effect of asODN against ENaC, a potential therapeutic target in cystic fibrosis; no decrease in ENaC mRNA levels or function was detected. CONCLUSION: This study suggests that although siRNAs and asODNs can be developed to inhibit gene expression in culture systems and certain organs in vivo, barriers to nucleic acid transfer in airway epithelial cells seen with large DNA molecules may also affect the efficiency of in vivo uptake of small nucleic acid molecules.


Subject(s)
Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Gene Targeting/methods , Lipids/chemistry , Oligonucleotides, Antisense/genetics , RNA, Small Interfering/genetics , Transfection/methods , Animals , Cells, Cultured , Epithelial Cells , Gene Silencing , Humans , Mice , NIH 3T3 Cells , Oligonucleotides, Antisense/administration & dosage , RNA, Small Interfering/administration & dosage , Respiratory Mucosa
20.
Proc Natl Acad Sci U S A ; 100(26): 15364-9, 2003 Dec 23.
Article in English | MEDLINE | ID: mdl-14673110

ABSTRACT

We developed a helper-dependent adenoviral vector for cystic fibrosis lung gene therapy. The vector expresses cystic fibrosis transmembrane conductance regulator (Cftr) using control elements from cytokeratin 18. The vector expressed properly localized CFTR in cultured cells and in the airway epithelia of mice. Cftr RNA and protein were present in whole lung and bronchioles, respectively, for 28 days after a vector dose. Acute inflammation was minimal to moderate. To test the therapeutic potential of the vector, we challenged mice with a clinical strain of Burkholderia cepacia complex (Bcc). Cftr knockout mice (but not Cftr+/+ littermates) challenged with Bcc developed severe lung histopathology and had high lung bacteria counts. Cftr knockout mice receiving gene therapy 7 days before Bcc challenge had less severe histopathology, and the number of lung bacteria was reduced to the level seen in Cftr+/+ littermates. These data suggest that gene therapy could benefit cystic fibrosis patients by reducing susceptibility to opportunistic pathogens.


Subject(s)
Burkholderia Infections/prevention & control , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Respiratory Mucosa/physiology , Respiratory Tract Infections/prevention & control , Analysis of Variance , Animals , Burkholderia Infections/genetics , COS Cells , Chlorocebus aethiops , Cystic Fibrosis Transmembrane Conductance Regulator/deficiency , Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Gene Expression Regulation/physiology , Genetic Therapy , Genetic Vectors , Humans , Lung/pathology , Mice , Mice, Knockout , Respiratory Tract Infections/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...