Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Curr Microbiol ; 81(8): 239, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38910205

ABSTRACT

Japanese encephalitis virus (JEV) is an orthoflavivirus that causes Japanese encephalitis, a mosquito-borne viral infection that primarily affects humans and animals. JEV is a major cause of encephalitis in many parts of Asia, particularly in rural and agricultural areas. In this study, we used the IFNAR1-/- mice model to investigate alterations in cytokine and apoptotic factor levels in IFNAR1-/- mice upon JEV infection. A 5-week-adult female C57BL/6 IFN-α/ß receptor knockout (IFNAR1-/-) transgenic mice were intramuscularly inoculated with several viral titers and monitored within 10 dpi. The weight changes and survival rates were evaluated during the study period. Gene expression analysis was performed using RT-qPCR, targeting genes related to specific cytokines and apoptotic factors, to identify the inflammatory factors fluctuations associated with JEV strain KBPV-VR-27 infection in IFNAR1-/- mice. The expression of cytokine genes was enhanced in IFNAR1-/- mice infected with JEV KBPV-VR-27. Notably, a significant induction of cytokines, such as IL-13, IL-17α, IFN-ß, and IFN-γ, was observed in the brain, while upregulation of IL-6, IFN-ß, and IFN-γ was exhibited in the lung. In addition, among the targeted apoptotic factors, only significant induction of Bak was observed in the brain. We also found that the spleen exhibited a higher viral load compared to the brain and lungs. In conclusion, the findings of this study shed light on the varying viral loads across targeted organs, with the brain exhibiting a lower viral load but pronounced expression of targeted pro-inflammatory cytokines in IFNAR1-/- mice.


Subject(s)
Apoptosis , Cytokines , Encephalitis Virus, Japanese , Encephalitis, Japanese , Mice, Inbred C57BL , Mice, Knockout , Receptor, Interferon alpha-beta , Animals , Receptor, Interferon alpha-beta/genetics , Encephalitis, Japanese/virology , Encephalitis, Japanese/genetics , Encephalitis, Japanese/immunology , Cytokines/metabolism , Cytokines/genetics , Encephalitis Virus, Japanese/genetics , Mice , Female , Mice, Transgenic , Disease Models, Animal , Brain/virology , Inflammation
2.
Front Biosci (Landmark Ed) ; 29(2): 61, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38420817

ABSTRACT

BACKGROUND: Outbreaks of highly pathogenic avian influenza viruses cause huge economic losses to the poultry industry worldwide. Vaccines that can protect chickens from infections caused by various variants of highly pathogenic H5Nx avian influenza viruses are needed owing to the continuous emergence of new variants. We previously showed that vaccines containing the H5 cleavage-site peptide from clade 2.3.4.4. H5N6 avian influenza virus protects chickens from infection with homologous clade 2.3.4.4. H5N6 avian influenza virus, but not from infection with the heterologous clade 1 H5N1 avian influenza virus. Therefore, we developed bivalent peptide vaccines containing H5 cleavage sites of viruses from both clades to protect chickens from both H5N1 and H5N6 avian influenza viruses. METHODS: Chickens were vaccinated with two doses of a combined peptide vaccine containing cleavage-site peptides from clade 1 and clade 2.3.4.4. highly pathogenic H5N1 and H5N6 avian influenza viruses and then challenged with both viruses. The infected chickens were monitored for survival and their tracheae and cloacae were sampled to check for viral shedding based on the median tissue culture infectious dose of 50 (log10TCID50/mL) in Madin-Darby canine kidney cells. RESULTS: Antibody production was induced at similar levels in the sera of chickens immunized with two doses of the combined peptide vaccines containing cleavage-site peptides from highly pathogenic H5N1 and H5N6 avian influenza viruses. The immunized chickens were protected from infection with both H5N1 and H5N6 avian influenza viruses without viral shedding in the tracheae and cloacae. CONCLUSIONS: Dual-peptide vaccines containing cleavage-site peptides of both clades can protect chickens from highly pathogenic avian influenza virus infections.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza Vaccines , Animals , Dogs , Hemagglutinins , Chickens , Protein Subunit Vaccines , Influenza A Virus, H5N6 Subtype , Vaccines, Combined , Peptides
3.
Sci Rep ; 13(1): 12374, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37524803

ABSTRACT

Because of extraordinary optoelectronic properties, two-dimensional (2D) materials are the subject of intense study in recent times. Hence, we investigate sub-wavelength dipole cavities (hole array) as a sensing platform for the detection of 2D reduced graphene oxide (r-GO) using terahertz time-domain spectroscopy (THz-TDS). The r-GO is obtained by reducing graphene oxide (GO) via Hummer's method. Its structural characteristics are verified using X-ray diffraction (XRD) and Raman spectroscopy. We also assessed the morphology and chemistry of r-GO nanosheets by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDAX), and Fourier Transformed Infrared (FTIR) spectroscopy. Further, we studied the surface plasmon resonance (SPR) characteristics of r-GO nanosheets hybridized dipole cavities using THz-TDS by varying the r-GO thickness on top of the dipole cavities, since these cavities are well known for sustaining strong SPRs. Based on these, we experimentally obtained a sensitivity of 12 GHz/µm for the porous r-GO film. Thus, a modification in SPR characteristics can be employed towards the identification and quantification of r-GO by suitably embedding it on an array of dipole cavities. Moreover, we have adopted a generic approach that can be expanded to sense other 2D materials like Boron Nitride (BN), phosphorene, MoS2, etc., leading to the development of novel THz nanophotonic sensing devices.

4.
Sci Rep ; 13(1): 4146, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36914682

ABSTRACT

In modern era, wireless communications at ultrafast speed are need of the hour and search for its solution through cutting edge sciences is a new perspective. To address this issue, the data rates in order of terabits per second (TBPS) could be a key step for the realization of emerging sixth generation (6G) networks utilizing terahertz (THz) frequency regime. In this context, new class of transition metal dichalcogenides (TMDs) have been introduced as potential candidates for future generation wireless THz technology. Herein, a strategy has been adopted to synthesize high-quality monolayer of molybdenum di-sulfide (MoS2) using indigenously developed atmospheric pressure chemical vapor deposition (APCVD) set-up. Further, the time-domain transmission and sheet conductivity were studied as well as a plausible mechanism of terahertz response for monolayer MoS2 has been proposed and compared with bulk MoS2. Hence, the obtained results set a stepping stone to employ the monolayer MoS2 as potential quantum materials benefitting the next generation terahertz communication devices.

5.
Appl Opt ; 61(25): 7435-7442, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36256046

ABSTRACT

Most of the compelling phenomena pertaining to plasmonic metamaterials revolve around the associated odd and even order resonances. However, excitation of odd and even order modes is polarization sensitive, particularly in the case of well-accepted split-ring resonator based terahertz (THz) plasmonic metasurfaces. Such a drawback limits the practical applications of plasmonic metasurfaces across the electromagnetic spectrum. In this context, we experimentally demonstrate multi-split-ring resonator based THz metasurfaces capable of simultaneously sustaining odd and even order resonances when the polarization of the probe beam is altered through 90°. We believe this work should be beneficial in realizing polarization-independent switches and frequency selective surfaces.

6.
Nanotechnology ; 33(32)2022 May 17.
Article in English | MEDLINE | ID: mdl-35487199

ABSTRACT

Interactions of terahertz radiations with matter can lead to the realization of functional devices related to sensing, high-speed communications, non-destructive testing, spectroscopy, etc In spite of the versatile applications that THz can offer, progress in this field is still suffering due to the dearth of suitable responsive materials. In this context, we have experimentally investigated emerging multiferroic BiFeO3 film (∼200 nm) employing terahertz time-domain spectroscopy (THz-TDS) under vertically applied (THz propagation in the same direction) electric fields. Our experiments reveal dynamic modulation of THz amplitude (up to about 7% within 0.2-1 THz frequency range) because of the variation in electric field from 0 to 600 kV cm-1. Further, we have captured signatures of the hysteretic nature of polarization switching in BiFeO3film through non-contact THz-TDS technique, similar trends are observed in switching spectroscopy piezoresponse force microscope measurements. We postulate the modulation of THz transmissions to the alignment/switching of ferroelectric polarization domains (under applied electric fields) leading to the reduced THz scattering losses (hence, reduced refractive index) experienced in the BiFeO3film. This work indicates ample opportunities in integrating nanoscale multiferroic material systems with THz photonics in order to incorporate dynamic functionalities to realize futuristic THz devices.

7.
iScience ; 25(4): 104024, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35310941

ABSTRACT

Coupled resonant cavities can enable strong photon energy confinement to facilitate the miniaturization of functional photonic devices for applications in designs of sensors, modulators, couplers, waveguides, color filters etc. Typically, the resonances in subwavelength plasmonic cavities rely on the excitation of surface plasmons at specific phase-matching conditions, usually determined by the lattice parameters and constituent material properties. Contrary to this notion, we experimentally demonstrate the control and manipulation of cavity resonances via suitably modifying the split ring resonator geometry in hybrid plasmonic-metasurface (dipole cavity-SRR) configuration without altering the lattice parameters. This results to the excitation of dual resonance peaks. Such dual channel characteristics demonstrate high quality (Q) factor, multi-band resonances, not permissible with typical (unhybridized) plasmonic dipole cavities. We envisage such hybrid meta-cavity designs can become important ingredients for futuristic terahertz devices that can hold the key for sixth generation (6G) communications, designer filters, dual channel sensors etc.

8.
Appl Opt ; 61(30): 9020-9027, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36607031

ABSTRACT

Toroidal resonances with weak free-space coupling have recently garnered significant research attraction toward the realization of advanced photonic devices. As a natural consequence of weak free-space coupling, toroidal resonances generally possess a high quality factor with low radiative losses. Because of these backgrounds, we have experimentally studied thin-film sensing utilizing toroidal resonance in a subwavelength planar metasurface, whose unit cell consists of near-field coupled asymmetric dual gap split-ring resonators (ASRRs). These ASRRs are placed in a mirrored configuration within the unit cell. The near-field coupled ASRRs support circulating surface currents in both resonators with opposite phases, resulting in excitation of the toroidal mode. In such a way, excited toroidal resonance can support strong light-matter interactions with external materials (analytes to be detected) placed on top of the metasurface. Further, our study reveals a sensitivity of 30 GHz/RIU while sensing AZ4533 photoresist film utilizing the toroidal mode. Such detection of thin films can be highly beneficial for the development of sensing devices for various biomolecules and dielectric materials that can be spin coated or drop casted on metasurfaces. Hence, the toroidal mode is further theoretically explored towards the detection of avian influenza virus subtypes, namely, H5N2 and H9N2. Our study reveals 6 and 9 GHz of frequency redshifts for H5N2 and H9N2, respectively, in comparison to the bare sample. Therefore, this work shows that toroidal metasurfaces can be a useful platform to sense thin films of various materials including biomaterials.


Subject(s)
Influenza A Virus, H5N2 Subtype , Influenza A Virus, H9N2 Subtype , Animals , Biocompatible Materials , Photons , Vibration
9.
Opt Lett ; 46(6): 1365-1368, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33720188

ABSTRACT

We experimentally demonstrate magnetic wire in a coupled, cut-wire pair-based metasurface operating at the terahertz frequencies. A dominant transverse magnetic dipole (non-axial circulating conduction current) is excited in one of the plasmonic wires that constitute the coupled system, whereas the other wire remains electric. Despite having large asymmetry-induced strong radiation channels in such a metasurface, non-radiative current distributions are obtained as a direct consequence of interaction between the electric and magnetic wire(s). We demonstrate a versatile platform to transform an electric to a magnetic wire and vice-versa through asymmetry-induced polymorphic hybridization with potential applications in photonic/electrical integrated circuits.

10.
Opt Lett ; 45(13): 3386-3389, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630852

ABSTRACT

We explore an inherent connection between two fundamental concepts of physics-resonance (eigen mode) hybridization and lattice effect in sub-wavelength periodic structures. Our study reveals that coupling with lattice mode is the prime deciding factor to determine the nature, position, and line shape of the hybridized states. Modulating lattice modes can effectively control mode hybridization and tune the relative position of hybridized modes [symmetric (electric), anti-symmetric (magnetic)] without changing any other structural dimensions in subwavelength plasmonic metamaterials. Outcomes of this study can be exploited in designing linear and nonlinear photonic structures toward futuristic meta devices.

11.
Sci Rep ; 8(1): 16773, 2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30425280

ABSTRACT

In this work, we experimentally investigate near-field capacitive coupling between a pair of single-gap split ring resonators (SRRs) in a terahertz metamaterial. The unit cell of our design comprises of two coupled SRRs with the split gaps facing each other. The coupling between two SRRs is examined by changing the gap of one resonator with respect to the other for several inter resonator separations. When split gap size of one resonator is increased for a fixed inter-resonator distance, we observe a split in the fundamental resonance mode. This split ultimately results in the excitation of narrow band low frequency resonance mode along with a higher frequency mode which gets blue shifted when the split gap increases. We attribute resonance split to the excitation of symmetric and asymmetric modes due to strong capacitive or electric interaction between the near-field coupled resonators, however blue shift of the higher frequency mode occurs mainly due to the reduced capacitance. The ability of near-field capacitive coupled terahertz metamaterials to excite split resonances could be significant in the construction of modulator and sensing devices beside other potential applications for terahertz domain.

12.
Sci Rep ; 7(1): 7355, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28779176

ABSTRACT

We investigate thin film sensing capabilities of a terahertz (THz) metamaterial, which comprises of an array of single split gap ring resonators (SRRs). The top surface of the proposed metamaterial is covered with a thin layer of analyte in order to examine various sensing parameters. The sensitivity and corresponding figure of merit (FoM) of the odd and even resonant modes are analyzed with respect to different thicknesses of the coated analyte film. The sensing parameters of different resonance modes are elaborated and explained with appropriate physical explanations. We have also employed a semi-analytical transmission line model in order to validate our numerically simulated observations. Such study should be very useful for the development of metamaterials based sensing devices, bio-sensors etc in near future.

13.
Opt Express ; 25(9): 10484-10493, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28468421

ABSTRACT

We analyze plasmon induced transparency (PIT) in a planar terahertz metamaterial comprising of two C-shaped resonators and a cut-wire. The two C-shaped resonators are placed alternately on both sides of the cut-wire such that it exhibits a PIT effect when coupled with the cut wire. We have further shown that the PIT window is modulated by displacing the C-shaped resonators w.r.t. the cut-wire. A lumped element equivalent circuit model is reported to explain the numerical observations for different coupling configurations. The PIT effect is further explored in a metamaterial comprising of a cross like structure and four C-shaped resonators. For this configuration, the PIT effect is studied for the incident light polarized in both x and y directions. It is observed that such a structure exhibits equally strong PIT effects for both the incident polarizations, indicating a polarization independent response to the incident terahertz radiation. Our study could be significant in the development of slow light devices and polarization independent sensing applications.

14.
Opt Express ; 22(16): 19401-10, 2014 Aug 11.
Article in English | MEDLINE | ID: mdl-25321024

ABSTRACT

Plasmonic structures with high symmetry, such as double-identical gap split ring resonators, possess dark eigenmodes. These dark eigenmodes are dominated by magnetic dipole and/or higher-order multi-poles such as electric quadrapoles. Consequently these dark modes interact very weakly with the surrounding environment, and can have very high quality factors (Q). In this work, we have studied, experimentally as well as theoretically, these dark eigenmodes in terahertz metamaterials. Theoretical investigations with the help of classical perturbation theory clearly indicate the existence of these dark modes in symmetric plasmonic metamaterials. However, these dark modes can be excited experimentally by breaking the symmetry within the constituting metamaterial resonators cell, resulting in high quality factor resonance mode. The symmetry broken metamaterials with such high quality factor can pave the way in realizing high sensitivity sensors, in addition to other applications.

15.
Science ; 340(6138): 1304-7, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23686344

ABSTRACT

Polarization is one of the basic properties of electromagnetic waves conveying valuable information in signal transmission and sensitive measurements. Conventional methods for advanced polarization control impose demanding requirements on material properties and attain only limited performance. We demonstrated ultrathin, broadband, and highly efficient metamaterial-based terahertz polarization converters that are capable of rotating a linear polarization state into its orthogonal one. On the basis of these results, we created metamaterial structures capable of realizing near-perfect anomalous refraction. Our work opens new opportunities for creating high-performance photonic devices and enables emergent metamaterial functionalities for applications in the technologically difficult terahertz-frequency regime.

16.
Opt Lett ; 37(2): 154-6, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22854451

ABSTRACT

We present the design, numerical simulations and experimental measurements of terahertz metamaterial absorbers with a broad and flat absorption top over a wide incidence angle range for either transverse electric or transverse magnetic polarization depending on the incident direction. The metamaterial absorber unit cell consists of two sets of structures resonating at different but close frequencies. The overall absorption spectrum is the superposition of individual components and becomes flat at the top over a significant bandwidth. The experimental results are in excellent agreement with numerical simulations.

17.
Opt Express ; 19(17): 15817-23, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21934944

ABSTRACT

We demonstrate the broadening of fundamental resonance in terahertz metamaterial by successive insertion of metal rings in the original unit cell of a split ring resonator (SRR) forming an inter connected nested structure. With the subsequent addition of each inner ring, the fundamental resonance mode shows gradual broadening and blue shift. For a total of four rings in the structure the resonance linewidth is enhanced by a factor of four and the blue shift is as large as 316 GHz. The dramatic increase in fundamental resonance broadening and its blue shifting is attributed to the decrease in the effective inductance of the entire SRR structure with addition of each smaller ring. We also observe that while the fundamental resonance is well preserved, the dipolar mode resonance undergoes multiple splittings with the addition of each ring in the nest. Such planar metamaterials, possessing broadband resonant response in the fundamental mode of operation, could have potential applications for extending the properties of metamaterials over a broader frequency range of operations.

18.
Opt Express ; 19(11): 10679-85, 2011 May 23.
Article in English | MEDLINE | ID: mdl-21643323

ABSTRACT

We experimentally and numerically study the nature of coupling between laterally paired terahertz metamaterial split-ring resonators. Coupling is shown to modify the inductive-capacitive (LC) resonances resulting in either red or blue-shifting. Results indicate that tuning of the electric and magnetic coupling parameters may be accomplished not by changing the orientation or density of SRRs, but by a design modification at the unit cell level. These experiments illustrate additional degrees of freedom in tuning the electromagnetic response, which offers a path to more robust metamaterial designs.

SELECTION OF CITATIONS
SEARCH DETAIL