Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37947924

ABSTRACT

Monoclonal antibodies (mAbs) are becoming an important therapeutic option in veterinary medicine, and understanding the pharmacokinetic (PK) of mAbs in higher-order animal species is also important for human drug development. To better understand the PK of mAbs in these animals, here we have expanded a platform physiological-based pharmacokinetic (PBPK) model to characterize the disposition of mAbs in three different preclinical species: cats, sheep, and dogs. We obtained PK data for mAbs and physiological parameters for the three different species from the literature. We were able to describe the PK of mAbs following intravenous (IV) or subcutaneous administration in cats, IV administration in sheep, and IV administration dogs reasonably well by fixing the physiological parameters and just estimating the parameters related to the binding of mAbs to the neonatal Fc receptor. The platform PBPK model presented here provides a quantitative tool to predict the plasma PK of mAbs in dogs, cats, and sheep. The model can also predict mAb PK in different tissues where the site of action might be located. As such, the mAb PBPK model presented here can facilitate the discovery, development, and preclinical-to-clinical translation of mAbs for veterinary and human medicine. The model can also be modified in the future to account for more detailed compartments for certain organs, different pathophysiology in the animals, and target-mediated drug disposition.

2.
J Neurochem ; 153(1): 120-137, 2020 04.
Article in English | MEDLINE | ID: mdl-31486527

ABSTRACT

Previous studies documented up-regulation of peptidase neurolysin (Nln) after brain ischemia, however, the significance of Nln function in the post-stroke brain remained unknown. The aim of this study was to assess the functional role of Nln in the brain after ischemic stroke. Administration of a specific Nln inhibitor Agaricoglyceride A (AgaA) to mice after stroke in a middle cerebral artery occlusion model, dose-dependently aggravated injury measured by increased infarct and edema volumes, blood-brain barrier disruption, increased levels of interleukin 6 and monocyte chemoattractant protein-1, neurological and motor deficit 24 h after stroke. In this setting, AgaA resulted in inhibition of Nln in the ischemic hemisphere leading to increased levels of Nln substrates bradykinin, neurotensin, and substance P. AgaA lacked effects on several physiological parameters and appeared non-toxic to mice. In a reverse approach, we developed an adeno-associated viral vector (AAV2/5-CAG-Nln) to overexpress Nln in the mouse brain. Applicability of AAV2/5-CAG-Nln to transduce catalytically active Nln was confirmed in primary neurons and in vivo. Over-expression of Nln in the mouse brain was also accompanied by decreased levels of its substrates. Two weeks after in vivo transduction of Nln using the AAV vector, mice were subjected to middle cerebral artery occlusion and the same outcome measures were evaluated 72 h later. These experiments revealed that abundance of Nln in the brain protects animals from stroke. This study is the first to document functional significance of Nln in pathophysiology of stroke and provide evidence that Nln is an endogenous mechanism functioning to preserve the brain from ischemic injury.


Subject(s)
Brain/physiopathology , Metalloendopeptidases/physiology , Stroke/physiopathology , Animals , Edema , Gene Expression Regulation , Glycerides/pharmacology , Infarction, Middle Cerebral Artery , Male , Metalloendopeptidases/antagonists & inhibitors , Metalloendopeptidases/genetics , Mice , Recombinant Proteins/drug effects , Stroke/etiology , Stroke/pathology , Transfection
3.
Biochim Biophys Acta Biomembr ; 1862(2): 183140, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31790694

ABSTRACT

There is an on-going debate whether anesthetic drugs, such as isoflurane, can cause meaningful structural changes in cell membranes at clinical concentrations. In this study, the effects of isoflurane on lipid membrane fluidity were investigated using fluorescence anisotropy and spectroscopy. In order to get a complete picture, four very different membrane systems (erythrocyte ghosts, a 5-lipid mixture that mimics brain endothelial cell membrane, POPC/Chol, and pure DPPC) were selected for the study. In all four systems, we found that fluorescence anisotropies of DPH-PC, nile-red, and TMA-DPH decrease significantly at the isoflurane concentrations of 1 mM and 5 mM. Furthermore, the excimer/monomer (E/M) ratio of dipyrene-PC jumps immediately after the addition of isoflurane. We found that isoflurane is quite effective to loosen up highly ordered lipid domains with saturated lipids. Interestingly, 1 mM isoflurane causes a larger decrease of nile-red fluorescence anisotropy in erythrocyte ghosts than 52.2 mM of ethanol, which is three times the legal limit of blood alcohol level. Our results paint a consistent picture that isoflurane at clinical concentrations causes significant and immediate increase of membrane fluidity in a wide range of membrane systems.


Subject(s)
Anesthetics, Inhalation/pharmacology , Isoflurane/pharmacology , Membrane Fluidity/drug effects , Anesthetics, Inhalation/adverse effects , Anesthetics, Inhalation/chemistry , Erythrocyte Membrane/drug effects , Humans , Isoflurane/adverse effects , Isoflurane/chemistry , Lipid Bilayers/chemistry , Liposomes/chemistry
4.
J Pharm Sci ; 106(6): 1659-1669, 2017 06.
Article in English | MEDLINE | ID: mdl-28238901

ABSTRACT

Nonspecific quantitation of [14C]sucrose in blood and brain has been routinely used as a quantitative measure of the in vivo blood-brain barrier (BBB) integrity. However, the reported apparent brain uptake clearance (Kin) of the marker varies widely (∼100-fold). We investigated the accuracy of the use of the marker in comparison with a stable isotope of sucrose ([13C]sucrose) measured by a specific liquid chromatography-tandem mass spectrometry method. Rats received single doses of each marker, and the Kin values were determined. Surprisingly, the Kin value of [13C]sucrose was 6- to 7-fold lower than that of [14C]sucrose. Chromatographic fractionation after in vivo administration of [14C]sucrose indicated that the majority of the brain content of radioactivity belonged to compounds other than the intact [14C]sucrose. However, mechanistic studies failed to reveal any substantial metabolism of the marker. The octanol:water partition coefficient of [14C]sucrose was >2-fold higher than that of [13C]sucrose, indicating the presence of lipid-soluble impurities in the [14C]sucrose solution. Our data indicate that [14C]sucrose overestimates the true BBB permeability to sucrose. We suggest that specific quantitation of the stable isotope (13C) of sucrose is a more accurate alternative to the current widespread use of the radioactive sucrose as a BBB marker.


Subject(s)
Blood-Brain Barrier/metabolism , Capillary Permeability , Sucrose/pharmacokinetics , Animals , Carbon Isotopes/administration & dosage , Carbon Isotopes/pharmacokinetics , Cells, Cultured , Male , Mice , Rats, Sprague-Dawley , Sucrose/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...