Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 6688, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37865645

ABSTRACT

Femtosecond-laser-assisted material restructuring employs extreme optical intensities to localize the ablation regions. To overcome the minimum feature size limit set by the wave nature of photons, there is a need for new approaches to tailored material processing at the nanoscale. Here, we report the formation of deeply-subwavelength features in silicon, enabled by localized laser-induced phase explosions in prefabricated silicon resonators. Using short trains of mid-infrared laser pulses, we demonstrate the controllable formation of high aspect ratio (>10:1) nanotrenches as narrow as [Formula: see text]. The trench geometry is shown to be scalable with wavelength, and controlled by multiple parameters of the laser pulse train, such as the intensity and polarization of each laser pulse and their total number. Particle-in-cell simulations reveal localized heating of silicon beyond its boiling point and suggest its subsequent phase explosion on the nanoscale commensurate with the experimental data. The observed femtosecond-laser assisted nanostructuring of engineered microstructures (FLANEM) expands the nanofabrication toolbox and opens exciting opportunities for high-throughput optical methods of nanoscale structuring of solid materials.

2.
Sci Rep ; 13(1): 18043, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872200

ABSTRACT

We examine the electromagnetic emission from two photo-illuminated linear arrays composed of inductively charged superconducting ring elements. The arrays are illuminated by an ultrafast infrared laser that triggers microwave broadband emission detected in the 1-26 GHz range. Based on constructive interference from the arrays a narrowing of the forward radiation lobe is observed with increasing element count and frequency demonstrating directed GHz emission. Results suggest that higher frequencies and a larger number of elements are achievable leading to a unique pulsed array emitter concept that can span frequencies from the microwave to the terahertz (THz) regime.

3.
J Phys Chem Lett ; 14(14): 3527-3534, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37015041

ABSTRACT

Research in two-dimensional layered materials (2DLMs) has exploded over the past several years for a variety of applications in photonics and optoelectronics. The 2D nature of these materials allows for a very local electronic probe of material as well as flexible integration with other functional components. Herein, using the femtosecond Z-scan technique, we report a giant two photon absorption (TPA) process and its saturation in the van der Waals gapped silver scandium thiophosphate (AgScP2S6) crystal. We have found a TPA coefficient of the order of 104 cm/GW which is orders of magnitude larger compared to many existing semiconductors and nonlinear crystals. Furthermore, we found a TPA cross-section of 103 GM and characterized the optical limiting (OL) response (0.2 mJ/cm2) and the multipulse laser damage threshold (1.09 ± 0.19 J/cm2). The combination of giant TPA, extremely low OL, and very high damage threshold suggests that this material could be extremely useful in applications like optical limiters or switches.

4.
Opt Lett ; 48(5): 1212-1215, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36857251

ABSTRACT

Multilayer dielectric (MLD) gratings with high diffraction efficiency and a high laser-induced damage (LID) threshold for pulse compressors are key to scaling the peak and average power of chirped pulse amplification lasers. However, surface defects introduced by manufacturing, storage, and handling processes can reduce the LID resistance of MLD gratings and impact the laser output. The underlying mechanisms of such defect-initiated LID remain unclear, especially in the femtosecond regime. In this Letter, we model dynamic processes in interactions of a 20-fs near-infrared (NIR) laser pulse and a MLD grating design in the presence of cylindrically symmetrical nodules and particle contaminants and cracks at the surface. Utilizing a dynamic model based on a 2D finite difference in time domain (FDTD) field solver coupled with photoionization, electron collision, and refractive index modification, we study the simulation results for the damage site distribution initiated by defects of various types and sizes and its impact on the LID threshold of the grating design.

5.
Sci Adv ; 9(8): eadf1015, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36812316

ABSTRACT

Modern electronics are founded on switching the electrical signal by radio frequency electromagnetic fields on the nanosecond time scale, limiting the information processing to the gigahertz speed. Recently, optical switches have been demonstrated using terahertz and ultrafast laser pulses to control the electrical signal and enhance the switching speed to the picosecond and a few hundred femtoseconds time scale. Here, we exploit the reflectivity modulation of the fused silica dielectric system in a strong light field to demonstrate the optical switching (ON/OFF) with attosecond time resolution. Moreover, we present the capability of controlling the optical switching signal with complex synthesized fields of ultrashort laser pulses for data binary encoding. This work paves the way for establishing optical switches and light-based electronics with petahertz speeds, several orders of magnitude faster than the current semiconductor-based electronics, opening a new realm in information technology, optical communications, and photonic processor technologies.

6.
J Phys Chem Lett ; 13(45): 10513-10521, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36342235

ABSTRACT

The advancement of ultrafast photonics and optoelectronic devices necessitates the exploration of new materials with optical and chemical stability to implement practical applications. Layered quaternary metal-thio/selenophosphate has attracted much interest over the past few years. Ferroelectric CuInP2S6 (CIPS) is an emerging material that belongs to this family. When synthesized with Cu deficiencies, CIPS forms self-assembled in-plane heterostructures, which in turn exhibit properties that are both compositionally and thermally dependent. These characteristics can be explored for applications in nonlinear optoelectronic and photonic devices. Herein, we study the second and third order nonlinear optical behavior of Cu0.33In1.30P2S6 bulk heterostructure. We observed large two photon induced nonlinear absorptions and self-defocusing at 1032 nm pulsed laser excitation using the Z-scan technique. Furthermore, we identified a polarization-dependent second harmonic signal and determined the laser-induced optical damage threshold. Our observations allow for the designing of optoelectronic and ultrafast photonic devices based on these materials.

7.
Nanomaterials (Basel) ; 12(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35457967

ABSTRACT

The chirped pulse amplification technique has enabled the generation of pulses of a few femtosecond duration with peak powers multi-Tera and Peta-Watt in the near infrared. Its implementation to realize even shorter pulse duration, higher energy, and higher repetition rate laser systems relies on overcoming the limitations imposed by laser damage of critical components. In particular, the laser damage of coatings in the amplifiers and in post-compression optics have become a bottleneck. The robustness of optical coatings is typically evaluated numerically through steady-state simulations of electric field enhancement in multilayer stacks. However, this approach cannot capture crucial characteristics of femtosecond laser induced damage (LID), as it only considers the geometry of the multilayer stack and the optical properties of the materials composing the stack. This approach neglects that in the interaction of an ultrashort pulse and the materials there is plasma generation and associated material modifications. Here, we present a numerical approach to estimate the LID threshold of dielectric multilayer coatings based on strong field electronic dynamics. In this dynamic scheme, the electric field propagation, photoionization, impact ionization, and electron heating are incorporated through a finite-difference time-domain algorithm. We applied our method to simulate the LID threshold of bulk fused silica, and of multilayer dielectric mirrors and gratings. The results are then compared with experimental measurements. The salient aspects of our model, such as the implementation of the Keldysh photoionization model, the impact ionization model, the electron collision model for 'low'-temperature, dense plasma, and the LID threshold criterion for few-cycle pulses are discussed.

8.
Opt Express ; 29(24): 39983-39999, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34809350

ABSTRACT

High peak and average power lasers with high wall-plug efficiency, like the Big Aperture Thulium (BAT) laser, have garnered tremendous attention in laser technology. To meet the requirements of the BAT laser, we have developed low-dispersion reflection multilayer dielectric (MLD) gratings suitable for compression of high-energy pulses for operations at 2 micron wavelength. We carried out 10000-on-1 damage tests to investigate the fluence damage thresholds of the designed MLD gratings and mirrors, which were found between 100-230 mJ/cm2. An ultrashort pulsed laser (FWHM = 53 fs, λ = 1.9 µm) operating at 500 Hz was used in the serpentine raster scans. The atomic force microscope images of the damage sites show blister formation of the underlying layers at lower fluences but ablation of the grating pillars at higher fluences. We simulated the dynamic electronic excitation in the MLD optics with a finite-difference in the time domain approach in 2D. The simulation results agree well with the LIDT measurements and the observed blister formation. This model is able to evaluate the absolute LIDT of MLD gratings.

9.
Appl Opt ; 60(25): G126-G131, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34613201

ABSTRACT

Yttrium aluminum garnet (YAG) is a common host material for both bulk and single-crystal fiber lasers. With increasing interest in developing optical technologies in the short-wave infrared and mid-infrared wavelength range, YAG may be a potential supercontinuum medium for these applications. Here, we characterize femtosecond laser pumped supercontinuum generation with 1200-2000 nm pump wavelengths (λp) for undoped, single-crystal YAG fibers, which are representative of the normal, zero, and anomalous-dispersion regimes. Supercontinuum was observed over the spectral region of about 0.2 to 1.6λp. Z-scan measurements were also performed of bulk YAG, which revealed little dispersion of the nonlinear index of refraction (n2) in the region of interest. The measured values of n2 (∼1×10-6cm2/GW) indicate a regime in which the nonlinear length, LNL, is less than the dispersion length, LD, (LNL≪LD). We report intensity clamping of the generated filament in the normal group velocity dispersion (GVD) regime and an isolated anti-Stokes peak in the anomalous GVD regime, suggesting further consideration is needed to optimize supercontinuum generation in this fiber medium.

10.
Nat Commun ; 12(1): 4185, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34234138

ABSTRACT

High harmonic generation (HHG) opens a window on the fundamental science of strong-field light-mater interaction and serves as a key building block for attosecond optics and metrology. Resonantly enhanced HHG from hot spots in nanostructures is an attractive route to overcoming the well-known limitations of gases and bulk solids. Here, we demonstrate a nanoscale platform for highly efficient HHG driven by intense mid-infrared laser pulses: an ultra-thin resonant gallium phosphide (GaP) metasurface. The wide bandgap and the lack of inversion symmetry of the GaP crystal enable the generation of even and odd harmonics covering a wide range of photon energies between 1.3 and 3 eV with minimal reabsorption. The resonantly enhanced conversion efficiency facilitates single-shot measurements that avoid material damage and pave the way to study the controllable transition between perturbative and non-perturbative regimes of light-matter interactions at the nanoscale.

11.
Nanomaterials (Basel) ; 11(5)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946520

ABSTRACT

Mid-infrared (MIR) wavelengths (2-10 µm) open up a new paradigm for femtosecond laser-solid interactions. On a fundamental level, compared to the ubiquitous near-IR (NIR) or visible (VIS) laser interactions, MIR photon energies render semiconductors to behave like high bandgap materials, while driving conduction band electrons harder due to the λ2 scaling of the ponderomotive energy. From an applications perspective, many VIS/NIR opaque materials are transparent for MIR. This allows sub-surface modifications for waveguide writing while simultaneously extending interactions to higher order processes. Here, we present the formation of an extreme sub-wavelength structure formation (∼λ/100) on a single crystal silicon surface by a 3600 nm MIR femtosecond laser with a pulse duration of 200 fs. The 50-100 nm linear structures were aligned parallel to the laser polarization direction with a quasi-periodicity of 700 nm. The dependence of the structure on the native oxide, laser pulse number, and polarization were studied. The properties of the structures were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), cross-sectional transmission electron-microscopy (CS-TEM), electron diffraction (ED), and energy-dispersive X-ray spectroscopy (EDX). As traditional models for the formation of laser induced periodic surface structure do not explain this structure formation, new theoretical efforts are needed.

12.
J Phys Condens Matter ; 33(27)2021 May 28.
Article in English | MEDLINE | ID: mdl-33878736

ABSTRACT

We report scanning tunneling microscopy (STM) studies of individual adatoms deposited on an InSb(110) surface. The adatoms can be reproducibly dropped off from the STM tip by voltage pulses, and impact tunneling into the surface by up to ∼100×. The spatial extent and magnitude of the tunneling effect are widely tunable by imaging conditions such as bias voltage, set current and photoillumination. We attribute the effect to occupation of a (+/0) charge transition level, and switching of the associated adatom-induced band bending. The effect in STM topographic images is well reproduced by transport modeling of filling and emptying rates as a function of the tip position. STM atomic contrast and tunneling spectra are in good agreement with density functional theory calculations for In adatoms. The adatom ionization effect can extend to distances greater than 50 nm away, which we attribute to the low concentration and low binding energy of the residual donors in the undoped InSb crystal. These studies demonstrate how individual atoms can be used to sensitively control current flow in nanoscale devices.

13.
Opt Express ; 29(5): 7479-7493, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33726248

ABSTRACT

Polycrystalline materials can mediate efficient frequency up-conversion for mid-infrared light. Motivated by the need to understand the properties of the harmonic and supercontinuum radiation from such media, we utilize realistic numerical simulations to reveal its complex temporal and spatial structure. We show that the generated radiation propagates in the form of long-duration pulse trains that can be difficult to compress and that optical filamentation in high-energy pulses gives rise to fine-structured beam profiles. We identify trends concerning pulse energy, sample length, and the microstructure of the material that can inform optimization for different applications.

14.
Sci Rep ; 10(1): 16475, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32999334

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Sci Rep ; 10(1): 18245, 2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33106504

ABSTRACT

We present how chamber background pressure affects energetic proton acceleration from an ultra-intense laser incident on a thin liquid target. A high-repetition-rate (100 Hz), 3.5 mJ laser with peak intensity of [Formula: see text] impinged on a 450 nm sheet of flowing liquid ethylene glycol. For these parameters, we experimentally demonstrate a threshold in laser-to-proton conversion efficiency at background pressures [Formula: see text], wherein the overall energy in ions [Formula: see text] increases by an order of magnitude. Proton acceleration becomes increasingly efficient at lower background pressures and laser-to-proton conversion efficiency approaches a constant as the vacuum pressure decreases. We present two-dimensional particle-in-cell simulations and a charge neutralization model to support our experimental findings. Our experiment demonstrates that high vacuum is not required for energetic ion acceleration, which relaxes target debris requirements and facilitates applications of high-repetition rate laser-based proton accelerators.

16.
Sci Rep ; 10(1): 9872, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32555513

ABSTRACT

Super-intense laser plasma interaction has shown great promise as a platform for next generation particle accelerators and sources for electron, x-rays, ions and neutrons. In particular, when a relativistic intense laser focus interacts with a thin solid density target, ionized electrons are accelerated to near the speed of light (c) within an optical cycle and are pushed in the forward and transverse directions away from focus, carrying a significant portion of the laser energy. These relativistic electrons are effectively collisionless, and their interactions with the ions and surrounding cold electrons are predominantly mediated by collective electromagnetic effects of the resulting currents and charge separation. Thus, a deeper understanding of subsequent high energy ions generated from various mechanisms and their optimization requires knowledge of the relativistic electron dynamics and the fields they produce. In addition to producing MV/m quasi-static fields, accelerating the ions and confining the majority of the electrons near the bulk of the laser target, these relativistic electron currents are subject to plasma instabilities like the Weibel instability as they propagate through the thermal population in the bulk target. In this work, we present high temporal (100 fs) and spatial (1 µm) resolution shadowgraphy video capturing relativistic radial ionization front expansion and the appearance of filamentation radiating from the laser spot within a sub-micron thick liquid sheet target. Filamentation within the region persists for several picoseconds and seeds the eventual recombination and heating dynamics on the nanosecond timescale. A large scale three-dimensional particle-in-cell (PIC) simulation of the interaction revealed the presence of strong magnetic fields characteristic of Weibel Instability, and corroborated the relativistic radial expansion of the ionization front, whose speed was determined to be 0.77c. Both the experimental and simulation results strongly point towards the target field ionization and the outward expanding hot electron current as the cause of the radial expansion.

17.
Opt Lett ; 45(9): 2672-2675, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32356843

ABSTRACT

The importance of high intensity few- to single-cycle laser pulses for applications such as intense isolated attosecond pulse generation is constantly growing, and with the breakdown of the monochromatic approximation in field ionization models, the few-cycle pulse (FCP) interaction with solids near the damage threshold has ushered a new paradigm of nonperturbative light-matter interaction. In this Letter, we systematically study and contrast how femtosecond laser-induced damage and ablation behaviors of SiO2/HfO2-based reflective multilayer dielectric thin film systems vary between FCP and 110 fs pulses. With time-resolved surface microscopy and ex situ analysis, we show that there are distinct differences in the interaction depending on the pulse duration, specifically in the "blister" morphology formation at lower fluences (damage) as well as in the dynamics of debris formation at higher fluences (ablation).

18.
Sci Rep ; 9(1): 19993, 2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31882675

ABSTRACT

Although ultrafast laser materials processing has advanced at a breakneck pace over the last two decades, most applications have been developed with laser pulses at near-IR or visible wavelengths. Recent progress in mid-infrared (MIR) femtosecond laser source development may create novel capabilities for material processing. This is because, at high intensities required for such processing, wavelength tuning to longer wavelengths opens the pathway to a special regime of laser-solid interactions. Under these conditions, due to the λ2 scaling, the ponderomotive energy of laser-driven electrons may significantly exceed photon energy, band gap and electron affinity and can dominantly drive absorption, resulting in a paradigm shift in the traditional concepts of ultrafast laser-solid interactions. Irreversible high-intensity ultrafast MIR laser-solid interactions are of primary interest in this connection, but they have not been systematically studied so far. To address this fundamental gap, we performed a detailed experimental investigation of high-intensity ultrafast modifications of silicon by single femtosecond MIR pulses (λ = 2.7-4.2 µm). Ultrafast melting, interaction with silicon-oxide surface layer, and ablation of the oxide and crystal surfaces were ex-situ characterized by scanning electron, atomic-force, and transmission electron microscopy combined with focused ion-beam milling, electron diffractometry, and µ-Raman spectroscopy. Laser induced damage and ablation thresholds were measured as functions of laser wavelength. The traditional theoretical models did not reproduce the wavelength scaling of the damage thresholds. To address the disagreement, we discuss possible novel pathways of energy deposition driven by the ponderomotive energy and field effects characteristic of the MIR wavelength regime.

19.
Nat Commun ; 10(1): 1345, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30902994

ABSTRACT

Time-dependent nonlinear media, such as rapidly generated plasmas produced via laser ionization of gases, can increase the energy of individual laser photons and generate tunable high-order harmonic pulses. This phenomenon, known as photon acceleration, has traditionally required extreme-intensity laser pulses and macroscopic propagation lengths. Here, we report on a novel nonlinear material-an ultrathin semiconductor metasurface-that exhibits efficient photon acceleration at low intensities. We observe a signature nonlinear manifestation of photon acceleration: third-harmonic generation of near-infrared photons with tunable frequencies reaching up to ≈3.1ω. A simple time-dependent coupled-mode theory, found to be in good agreement with experimental results, is utilized to predict a new path towards nonlinear radiation sources that combine resonant upconversion with broadband operation.

20.
Opt Express ; 27(3): 2867-2885, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30732318

ABSTRACT

Polycrystalline ZnSe is an exciting source of broadband supercontinuum and high-harmonic generation via random quasi phase matching, exhibiting broad transparency in the mid-infrared (0.5-20 µm). In this work, the effects of wavelength, pulse power, intensity, propagation length, and crystallinity on supercontinuum and high harmonic generation are investigated experimentally using ultrafast mid-infrared pulses. Observed harmonic conversion efficiency scales linearly in propagation length, reaching as high as 36%. For the first time to our knowledge, n2 is measured for mid-infrared wavelengths in ZnSe: n2(λ=3.9 µm)=(1.2±0.3)×10-14 cm2/W. Measured n2 is applied to simulations modeling high-harmonic generation in polycrystalline ZnSe as an effective medium.

SELECTION OF CITATIONS
SEARCH DETAIL
...