Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 913: 169718, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38163602

ABSTRACT

Rapid population growth creating an excessive pressure on the marine environment and thus monitoring of marine ecosystem is essential. However, due to high technical and financial involvement, monitoring of coastal ecosystem is always challenging in developing countries. This study aims to develop an integrated coastal ecosystem monitoring system that combines scientific sampling, numerical model simulation and citizen science observations to monitor the coastal ecosystem of Bangladesh. This concept of integrated monitoring approach was piloted from January 2022 to April 2023 at the South East coastal zone of Bangladesh. Scientific sampling and numerical model simulations were performed for temperature and salinity data collection. Citizen science approach was employed to collect data on environmental conditions, fisheries, plankton, other marine resources, and plastic pollution. Numerical model simulations and citizen scientists observations of temperature and salinity showed good agreement with the scientifically collected data. In addition, citizen scientists observations on fisheries, plankton, other marine resources and plastic pollution were also in line with the existing database and previous studies. The proposed integrated monitoring approach presents a viable technique, creating a new avenue for coastal and marine ecosystem monitoring where infrastructural facilities are limited.

2.
Emerg Top Life Sci ; 6(4): 389-402, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36398707

ABSTRACT

Assessing three interlinked issues, plastic pollution, climate change and biodiversity loss separately can overlook potential interactions that may lead to positive or negative impacts on global ecosystem processes. Recent studies suggest that threatened species and ecosystems are vulnerable to both plastic pollution and climate change stressors. Here we consider the connectivity and state of knowledge between these three environmental issues with a focus on the Global South. Nine out of top ten Long-Term Climate Risk Index (CRI) (2000-2019) ranked countries are located within the Global South, yet research is focused in the Global North. A literature search for the top ten Long-Term Climate Risk Index (CRI) (2000-2019) ranked countries matched a total of 2416 (3.3% of global publications) search results on climate change, with 56 (4% of the global publications) on plastic pollution, and seven (7.7% of the global publications) on both climate change and plastic pollution. There is a strong correlation between the Global South and high biodiversity hotspots, high food insecurity and low environmental performance. Using Bangladesh as a case study, we show the erosion rates and sea level rise scenarios that will increase ocean-bound plastic pollution and impact high biodiversity areas. Poverty alleviation and promoting renewable energy and green practices can significantly reduce the stress on the environment. We recommend that these connected planetary threats can be best addressed through a holistic and collaborative approach to research, a focus on the Global South, and an ambitious policy agenda.


Subject(s)
Ecosystem , Plastics , Environmental Pollution , Climate Change , Biodiversity
4.
Sci Total Environ ; 838(Pt 2): 155896, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35569670

ABSTRACT

Globally microplastics (MPs) contaminations have been widely reported across the large number of organisms in the marine ecosystem. Consequently, trophic transfer of MPs inferred to occur across the organisms of marine food webs. However, scientific evidence on trophic transfer of MPs across the marine organisms is very limited. Therefore, this study aimed to understand the transfer of MPs across the trophic levels in the marine ecosystem. We sampled individuals of different species of primary consumers, secondary consumers, tertiary consumers and quaternary consumers from the aquatic ecosystem of Sundarbans mangrove forest from June 2021 to December 2021. This study found that marine organisms in the aquatic ecosystem of Sundarbans mangrove forest are contaminated with MPs. The abundance of MPs in collected samples varied between 0.56 ±â€¯0.25 items/individual and 6.06 ±â€¯1.20 items/individual. Maximum MPs was recorded as 5.5 ±â€¯1.21 items/individual in predators followed by 5.1 ±â€¯0.85, 4.5 ±â€¯0.39, 1.2 ±â€¯0.26, 1.1 ±â€¯0.28 and 1.01 ±â€¯0.25 in filter feeders, browsers, deposit feeders, selective planktivores and variable feeders, respectively. Maximum MPs abundance was encountered in quaternary consumers (4.17 items/individual) followed by tertiary consumers (3.17 items/individual), secondary consumers (2.74 items/individual) and primary consumers (0.56 items/individual). We found that MPs abundance increases with the increase of trophic levels (R2 = 0.64, p < 0.001) which indicates that transfer of MPs across different trophic levels and also showed the evidence of biomagnification of MPs in successive trophic levels. Our study is the first report of trophic transfer of MPs in sub-tropical mangrove ecosystem and will serve as a guideline to understand the MPs pollution in the coastal ecosystem of Bangladesh.


Subject(s)
Microplastics , Water Pollutants, Chemical , Aquatic Organisms , Bangladesh , Ecosystem , Environmental Monitoring , Food Chain , Humans , Plastics , Water Pollutants, Chemical/analysis , Wetlands
5.
Conserv Biol ; 35(6): 1833-1849, 2021 12.
Article in English | MEDLINE | ID: mdl-34289517

ABSTRACT

Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard.


RESUMEN: Reconociendo que era imperativo evaluar la recuperación de especies y el impacto de la conservación, la Unión Internacional para la Conservación de la Naturaleza (UICN) convocó en 2012 al desarrollo de una "Lista Verde de Especies" (ahora el Estatus Verde de las Especies de la UICN). Un marco de referencia preliminar de una Lista Verde de Especies para evaluar el progreso de las especies hacia la recuperación, publicado en 2018, proponía 2 componentes separados pero interconectados: un método estandarizado (i.e., medición en relación con puntos de referencia de la viabilidad de especies, funcionalidad y distribución antes del impacto) para determinar el estatus de recuperación actual (puntuación de recuperación de la especie) y la aplicación de ese método para estimar impactos en el pasado y potenciales de conservación basados en 4 medidas (legado de conservación, dependencia de conservación, ganancia de conservación y potencial de recuperación). Probamos el marco de referencia con 181 especies representantes de diversos taxa, historias de vida, biomas, y categorías (riesgo de extinción) en la Lista Roja de la IUCN. Con base en la distribución observada de la puntuación de recuperación de las especies, proponemos las siguientes categorías de recuperación de la especie: totalmente recuperada, ligeramente mermada, moderadamente mermada, mayormente mermada, gravemente mermada, extinta en estado silvestre, e inderterminada. Cincuenta y nueve por ciento de las especies se consideraron mayormente o gravemente mermada. Aunque hubo una relación negativa entre el riesgo de extinción y la puntuación de recuperación de la especie, la variación fue considerable. Algunas especies en las categorías de riesgo bajas fueron evaluadas como más lejos de recuperarse que aquellas con alto riesgo. Esto enfatiza que la recuperación de especies es diferente conceptualmente al riesgo de extinción y refuerza la utilidad del Estado Verde de las Especies de la UICN para comprender integralmente el estatus de conservación de especies. Aunque el riesgo de extinción no predijo el legado de conservación, la dependencia de conservación o la ganancia de conservación, se correlacionó positivamente con la potencial de recuperación. Solo 1.7% de las especies probadas fue categorizado como cero en los 4 indicadores de impacto de la conservación, lo que indica que la conservación ha jugado, o jugará, un papel en la mejoría o mantenimiento del estatus de la especie la gran mayoría de ellas. Con base en nuestros resultados, diseñamos una versión actualizada del marco de referencia para la evaluación que introduce la opción de utilizar una línea de base dinámica para evaluar los impactos futuros de la conservación en el corto plazo y redefine corto plazo como 10 años.


Subject(s)
Endangered Species , Extinction, Biological , Animals , Biodiversity , Conservation of Natural Resources , Ecosystem , Risk
6.
Sci Total Environ ; 761: 143285, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33172641

ABSTRACT

Rivers play a crucial role in transporting land-based plastic waste to the ocean, with the Ganges reported as the second largest contributing river of plastic pollution globally. To better quantify global plastic pollution transport and effectively reduce the sources and risks imposed, a clear understanding of the origin, transport, fate, and effects of riverine plastic debris is important. In this review paper, we discuss the current state of knowledge of plastic pollution in aquatic systems in Bangladesh and evaluate existing research gaps. Bangladesh has been recognized as an internationally significant nation in the plastic pollution crisis, but this paper identifies a major disconnect in knowledge, understanding and capacity to understand and address this critical environmental and public health issue. Here, we review all available scientific publications on plastic pollution in the freshwater and marine environment in Bangladesh and identify key research themes. A total of 24 studies relevant to plastic pollution were published from 2006 to 2019, of which 18 were selected for this study under the authors' criteria. Nine focused on plastic pollution in the marine environment, eight focused on plastic waste generation and management and only one focused on the freshwater environment. We compared our findings with three other countries in the Global South with comparable per capita gross domestic product (GDP) and mismanaged waste, namely Cambodia, Kenya, and Tanzania, revealing similar knowledge gaps. This lack of research demonstrates a need for further work to monitor and model riverine plastic transport and examine the implications for aquatic organisms. This will facilitate the formulation of national management strategies aimed at addressing plastic pollution.

7.
Sci Total Environ ; 756: 143305, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33199004

ABSTRACT

Abandoned, lost or otherwise discarded fishing gear represents a substantial proportion of global marine plastic pollution and can cause significant environmental and socio-economic impacts. Yet little is known about its presence in, and implications for, freshwater ecosystems or its downstream contribution to plastic pollution in the ocean. This study documents fishing gear-related debris in one of the world's largest plastic pollution contributing river catchments, the Ganges. Riverbank surveys conducted along the length of the river, from the coast in Bangladesh to the Himalaya in India, show that derelict fishing gear density increases with proximity to the sea. Fishing nets were the main gear type by volume and all samples examined for polymer type were plastic. Illegal gear types and restricted net mesh sizes were also recorded. Socio-economic surveys of fisher communities explored the behavioural drivers of plastic waste input from one of the world's largest inland fisheries and revealed short gear lifespans and high turnover rates, lack of appropriate end-of-life gear disposal methods and ineffective fisheries regulations. A biodiversity threat assessment identified the air-breathing aquatic vertebrate species most at risk of entanglement in, and impacts from, derelict fishing gear; namely species of threatened freshwater turtle and otter, and the endangered Ganges river dolphin. This research demonstrates a need for targeted and practical interventions to limit the input of fisheries-related plastic pollution to this major river system and ultimately, the global ocean. The approach used in this study could be replicated to examine the inputs, socio-economic drivers and ecological impacts of this previously uncharacterised but important source of plastic pollution in other major rivers worldwide.

8.
PLoS One ; 15(12): e0242459, 2020.
Article in English | MEDLINE | ID: mdl-33264309

ABSTRACT

Rivers worldwide are now acting as major transport pathways for plastic pollution and discharge large quantities of waste into the ocean. Previous oceanographic modelling and current drifter data have been used to predict the movement and accumulation of plastic pollution in the marine environment, but our understanding of the transport and fate through riparian systems is still largely unknown. Here we undertook a proof of concept study by applying open source tracking technology (both GPS (Global Positing System) cellular networks and satellite technology), which have been successfully used in many animal movement studies, to track the movements of individual plastic litter items (500 ml PET (polyethylene terephthalate) drinks bottles) through the Ganges River system (known as the Ganga in India and the Padma and Meghna in Bangladesh, hereafter known as the Ganges) and the Bay of Bengal. Deployed tags were successfully tracked through the Ganges river system and into the Bay of Bengal marine system. The "bottle tags" were designed and built (e.g. shape, size, buoyancy) to replicate true movement patterns of a plastic bottle. The maximum distance tracked to date is 2845 km over a period of 94 days. We discuss lessons learnt from the development of these plastic litter tags, and outline how the potential widespread use of this open source technology has the ability to significantly increase understanding of the location of accumulation areas and the timing of large inputs of plastic pollution into the aquatic system. Furthermore, "bottle tags" may act as a powerful tool for stimulating social behaviour change, informing science-based policy, and as valuable educational outreach tools for public awareness.


Subject(s)
Plastics/analysis , Technology , Water Pollution/analysis , Bangladesh , Geography , Oceans and Seas , Rivers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...