Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Infect Dis ; 227(10): 1143-1152, 2023 05 12.
Article in English | MEDLINE | ID: mdl-35776136

ABSTRACT

BACKGROUND: The epidemiological advantage of Omicron variant is evidenced by its rapid spread and the ability to outcompete prior variants. Among Omicron sublineages, early outbreaks were dominated by BA.1, while BA.2 has gained dominance since February 2022. The relative pathogenicity and transmissibility of BA.1 and BA.2 have not been fully defined. METHODS: We compared viral loads and clinical signs in Syrian hamsters after infection with BA.1, BA.2, or D614G variant. A competitive transmission model and next-generation sequencing were used to compare the relative transmission potential of BA.1 and BA.2. RESULTS: BA.1 and BA.2 caused no apparent clinical signs, while D614G caused more than 10% weight loss. Higher viral loads were detected in nasal wash samples and nasal turbinate and lung tissues from BA.1-inoculated hamsters compared with BA.2-inoculated hamsters. No aerosol transmission was observed for BA.1 or BA.2 under the experimental condition in which D614G transmitted efficiently. BA.1 and BA.2 were able to transmit among hamsters via direct contact; however, BA.1 transmitted more efficiently than BA.2 under the competitive transmission model. No recombination was detected from direct contacts exposed simultaneously to BA.1 and BA.2. CONCLUSIONS: Omicron BA.1 and BA.2 demonstrated attenuated pathogenicity and reduced transmission potential in hamsters compared with early SARS-CoV-2 strains.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , Mesocricetus , SARS-CoV-2/genetics , Virulence
2.
Vet Pathol ; 59(4): 639-647, 2022 07.
Article in English | MEDLINE | ID: mdl-34467820

ABSTRACT

Several animal models have been developed to study the pathophysiology of SARS-CoV-2 infection and to evaluate vaccines and therapeutic agents for this emerging disease. Similar to infection with SARS-CoV-1, infection of Syrian hamsters with SARS-CoV-2 results in moderate respiratory disease involving the airways and lung parenchyma but does not lead to increased mortality. Using a combination of immunohistochemistry and transmission electron microscopy, we showed that the epithelium of the conducting airways of hamsters was the primary target for viral infection within the first 5 days of infection, with little evidence of productive infection of pneumocytes. At 6 days postinfection, antigen was cleared but parenchymal damage persisted, and the major pathological changes resolved by day 14. These findings are similar to those previously reported for hamsters with SARS-CoV-1 infection. In contrast, infection of K18-hACE2 transgenic mice resulted in pneumocyte damage, with viral particles and replication complexes in both type I and type II pneumocytes together with the presence of convoluted or cubic membranes; however, there was no evidence of virus replication in the conducting airways. The Syrian hamster is a useful model for the study of SARS-CoV-2 transmission and vaccination strategies, whereas infection of the K18-hCE2 transgenic mouse results in lethal disease with fatal neuroinvasion but with sparing of conducting airways.


Subject(s)
COVID-19 , Respiratory System , Viral Tropism , Angiotensin-Converting Enzyme 2 , Animals , COVID-19/virology , Cricetinae , Disease Models, Animal , Lung/pathology , Mesocricetus , Mice , Mice, Transgenic , Respiratory System/virology , SARS-CoV-2/genetics
3.
J Infect Dis ; 225(1): 65-74, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34036370

ABSTRACT

BACKGROUND: A(H1N1)pdm09 influenza viruses replicate efficiently in respiratory epithelia and are transmitted via respiratory droplets and aerosols expelled by infected hosts. The relative onward transmission potential of influenza viruses replicating in the upper and lower respiratory epithelial cells has not been fully defined. METHODS: Wild-type and barcoded A(H1N1)pdm09 viruses that differed by 2 synonymous mutations per gene segment were inoculated into ferrets via intranasal and intratracheal routes. Naive recipients were exposed to the exhaled breath of inoculated donors for 8 hours on day 2 postinoculation. Onward transmission potential of wild-type and barcoded genotypes were monitored by next generation sequencing. RESULTS: Transmissible airborne particles were respired from the upper but not the lower respiratory epithelial cells of donor ferrets. There was limited mixing of viral populations replicating in the upper and lower respiratory tissues. CONCLUSIONS: The ferret upper respiratory epithelium was mapped as the anatomic site that generated influenza virus-laden particles mediating onward transmission by air. Our results suggest that vaccines and antivirals should aim to reduce viral loads in the upper respiratory tract for prevention of influenza transmission.


Subject(s)
Ferrets/virology , Influenza A Virus, H1N1 Subtype/isolation & purification , Orthomyxoviridae Infections/transmission , Animals , Influenza A Virus, H1N1 Subtype/genetics , Orthomyxoviridae Infections/diagnosis , Orthomyxoviridae Infections/epidemiology , Respiratory Aerosols and Droplets , Respiratory System , Viral Tropism , Virus Replication
4.
Emerg Microbes Infect ; 10(1): 2030-2041, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34666614

ABSTRACT

The segmented genome of influenza A virus has conferred significant evolutionary advantages to this virus through genetic reassortment, a mechanism that facilitates the rapid expansion of viral genetic diversity upon influenza co-infections. Therefore, co-infection of genetically diverse avian influenza viruses in poultry may pose a significant public health risk in generating novel reassortants with increased zoonotic potential. This study investigated the reassortment patterns of a Pearl River Delta-lineage avian influenza A(H7N9) virus and four genetically divergent avian influenza A(H9N2) viruses upon co-infection in embryonated chicken eggs and chickens. To characterize "within-host" and "between-host" genetic diversity, we further monitored the viral genotypes that were subsequently transmitted to contact chickens in serial transmission experiments. We observed that co-infection with A(H7N9) and A(H9N2) viruses may lead to the emergence of novel reassortant viruses in ovo and in chickens, albeit with different reassortment patterns. Novel reassortants detected in donor chickens co-infected with different combinations of the same A(H7N9) virus and different A(H9N2) viruses showed distinct onward transmission potential to contact chickens. Sequential transmission of novel reassortant viruses was only observed in one out of four co-infection combinations. Our results demonstrated different patterns by which influenza viruses may acquire genetic diversity through co-infection in ovo, in vivo, and under sequential transmission conditions.


Subject(s)
Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/virology , Influenza, Human/virology , Poultry Diseases/virology , Animals , Chick Embryo , Chickens , Coinfection/transmission , Coinfection/virology , Genotype , Humans , Influenza A Virus, H7N9 Subtype/physiology , Influenza A Virus, H9N2 Subtype/physiology , Influenza in Birds/transmission , Influenza, Human/transmission , Phylogeny , Poultry Diseases/transmission , Reassortant Viruses/genetics , Reassortant Viruses/physiology , Recombination, Genetic , Viral Zoonoses/transmission , Viral Zoonoses/virology
5.
mBio ; 12(5): e0239521, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34517754

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein is the main target for neutralizing antibodies. These antibodies can be elicited through immunization or passively transferred as therapeutics in the form of convalescent-phase sera or monoclonal antibodies (MAbs). Potently neutralizing antibodies are expected to confer protection; however, it is unclear whether weakly neutralizing antibodies contribute to protection. Also, their mechanism of action in vivo is incompletely understood. Here, we demonstrate that 2B04, an antibody with an ultrapotent neutralizing activity (50% inhibitory concentration [IC50] of 0.04 µg/ml), protects hamsters against SARS-CoV-2 in a prophylactic and therapeutic infection model. Protection is associated with reduced weight loss and viral loads in nasal turbinates and lungs after challenge. MAb 2B04 also blocked aerosol transmission of the virus to naive contacts. We next examined three additional MAbs (2C02, 2C03, and 2E06), recognizing distinct epitopes within the receptor binding domain of spike protein that possess either minimal (2C02 and 2E06, IC50 > 20 µg/ml) or weak (2C03, IC50 of 5 µg/ml) virus neutralization capacity in vitro. Only 2C03 protected Syrian hamsters from weight loss and reduced lung viral load after SARS-CoV-2 infection. Finally, we demonstrated that Fc-Fc receptor interactions were not required for protection when 2B04 and 2C03 were administered prophylactically. These findings inform the mechanism of protection and support the rational development of antibody-mediated protection against SARS-CoV-2 infections. IMPORTANCE The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2, has resulted in the loss of millions of lives. Safe and effective vaccines are considered the ultimate remedy for the global social and economic disruption caused by the pandemic. However, a thorough understanding of the immune correlates of protection against this virus is lacking. Here, we characterized four different monoclonal antibodies and evaluated their ability to prevent or treat SARS-CoV-2 infection in Syrian hamsters. These antibodies varied in their ability to neutralize the virus in vitro. Prophylactic administration of potent and weakly neutralizing antibodies protected against SARS-CoV-2 infection, and this effect was Fc receptor independent. The potent neutralizing antibody also had therapeutic efficacy and eliminated onward aerosol transmission. In contrast, minimally neutralizing antibodies provided no protection against infection with SARS-CoV-2 in Syrian hamsters. Combined, these studies highlight the significance of weakly neutralizing antibodies in the protection against SARS-CoV-2 infection and associated disease.


Subject(s)
Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , COVID-19/metabolism , Receptors, Fc/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/prevention & control , Cricetinae , Male , Mesocricetus , Protein Binding
6.
Nature ; 583(7818): 834-838, 2020 07.
Article in English | MEDLINE | ID: mdl-32408338

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus with high nucleotide identity to SARS-CoV and to SARS-related coronaviruses that have been detected in horseshoe bats, has spread across the world and had a global effect on healthcare systems and economies1,2. A suitable small animal model is needed to support the development of vaccines and therapies. Here we report the pathogenesis and transmissibility of SARS-CoV-2 in golden (Syrian) hamsters (Mesocricetus auratus). Immunohistochemistry assay demonstrated the presence of viral antigens in nasal mucosa, bronchial epithelial cells and areas of lung consolidation on days 2 and 5 after inoculation with SARS-CoV-2, followed by rapid viral clearance and pneumocyte hyperplasia at 7 days after inoculation. We also found viral antigens in epithelial cells of the duodenum, and detected viral RNA in faeces. Notably, SARS-CoV-2 was transmitted efficiently from inoculated hamsters to naive hamsters by direct contact and via aerosols. Transmission via fomites in soiled cages was not as efficient. Although viral RNA was continuously detected in the nasal washes of inoculated hamsters for 14 days, the communicable period was short and correlated with the detection of infectious virus but not viral RNA. Inoculated and naturally infected hamsters showed apparent weight loss on days 6-7 post-inoculation or post-contact; all hamsters returned to their original weight within 14 days and developed neutralizing antibodies. Our results suggest that features associated with SARS-CoV-2 infection in golden hamsters resemble those found in humans with mild SARS-CoV-2 infections.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/transmission , Coronavirus Infections/virology , Disease Models, Animal , Lung/pathology , Lung/virology , Mesocricetus/virology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Aerosols , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Antigens, Viral/isolation & purification , Antigens, Viral/metabolism , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , Betacoronavirus/metabolism , Bronchi/pathology , Bronchi/virology , COVID-19 , Coronavirus Infections/immunology , Duodenum/virology , Fomites/virology , Housing, Animal , Kidney/virology , Male , Mesocricetus/immunology , Nasal Mucosa/virology , Pandemics , Pneumonia, Viral/immunology , RNA, Viral/analysis , SARS-CoV-2 , Viral Load , Weight Loss
7.
Antiviral Res ; 178: 104786, 2020 06.
Article in English | MEDLINE | ID: mdl-32251767

ABSTRACT

An escalating pandemic by the novel SARS-CoV-2 virus is impacting global health and effective therapeutic options are urgently needed. We evaluated the in vitro antiviral effect of compounds that were previously reported to inhibit coronavirus replication and compounds that are currently under evaluation in clinical trials for SARS-CoV-2 patients. We report the antiviral effect of remdesivir, lopinavir, homorringtonine, and emetine against SARS-CoV-2 virus in Vero E6 cells with the estimated 50% effective concentration at 23.15 µM, 26.63 µM, 2.55 µM and 0.46 µM, respectively. Ribavirin or favipiravir that are currently evaluated under clinical trials showed no inhibition at 100 µM. Synergy between remdesivir and emetine was observed, and remdesivir at 6.25 µM in combination with emetine at 0.195 µM may achieve 64.9% inhibition in viral yield. Combinational therapy may help to reduce the effective concentration of compounds below the therapeutic plasma concentrations and provide better clinical benefits.


Subject(s)
Antimetabolites/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Emetine/pharmacology , Homoharringtonine/pharmacology , Lopinavir/pharmacology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Virus Replication/drug effects , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Amides/pharmacology , Animals , Betacoronavirus/physiology , COVID-19 , Chlorocebus aethiops , Drug Combinations , Epithelial Cells , Humans , Pandemics , Pyrazines/pharmacology , Ribavirin/pharmacology , SARS-CoV-2 , Vero Cells , COVID-19 Drug Treatment
8.
Proc Natl Acad Sci U S A ; 115(10): E2386-E2392, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29463703

ABSTRACT

Epidemics and pandemics of influenza are characterized by rapid global spread mediated by non-mutually exclusive transmission modes. The relative significance between contact, droplet, and airborne transmission is yet to be defined, a knowledge gap for implementing evidence-based infection control measures. We devised a transmission chamber that separates virus-laden particles by size and determined the particle sizes mediating transmission of influenza among ferrets through the air. Ferret-to-ferret transmission was mediated by airborne particles larger than 1.5 µm, consistent with the quantity and size of virus-laden particles released by the donors. Onward transmission by donors was most efficient before fever onset and may continue for 5 days after inoculation. Multiple virus gene segments enhanced the transmissibility of a swine influenza virus among ferrets by increasing the release of virus-laden particles into the air. We provide direct experimental evidence of influenza transmission via droplets and fine droplet nuclei, albeit at different efficiency.


Subject(s)
Air/analysis , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/transmission , Influenza, Human/virology , Air Microbiology , Animals , Ferrets , Humans , Influenza A Virus, H1N1 Subtype/chemistry , Influenza A Virus, H1N1 Subtype/genetics , Male , Virus Replication
9.
J Virol ; 89(19): 9939-51, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26202239

ABSTRACT

UNLABELLED: Poultry exposure is a major risk factor for human H7N9 zoonotic infections, for which the mode of transmission remains unclear. We studied the transmission of genetically related poultry and human H7N9 influenza viruses differing by four amino acids, including the host determinant PB2 residue 627. A/Silkie chicken/HK/1772/2014 (SCk1772) and A/HK/3263/14 (HK3263) replicated to comparable titers in chickens, with superior oropharyngeal over cloacal shedding; both viruses transmitted efficiently among chickens via direct contact but inefficiently via the airborne route. Interspecies transmission via the airborne route was observed for ferrets exposed to the SCk1772- or HK3263-infected chickens, while low numbers of copies of influenza viral genome were detected in the air, predominantly at particle sizes larger than 4 µm. In ferrets, the human isolate HK3263 replicated to higher titers and transmitted more efficiently via direct contact than SCk1772. We monitored "intrahost" and "interhost" adaptive changes at PB2 residue 627 during infection and transmission of the Sck1772 that carried E627 and HK3263 that carried V/K/E polymorphism at 60%, 20%, and 20%, respectively. For SCk1772, positive selection for K627 over E627 was observed in ferrets during the chicken-to-ferret or ferret-to-ferret transmission. For HK3263 that contained V/K/E polymorphism, mixed V627 and E627 genotypes were transmitted among chickens while either V627 or K627 was transmitted to ferrets with a narrow transmission bottleneck. Overall, our results suggest direct contact as the main mode for H7N9 transmission and identify the PB2-V627 genotype with uncompromised fitness and transmissibility in both avian and mammalian species. IMPORTANCE: We studied the modes of H7N9 transmission, as this information is crucial for developing effective control measures for prevention. Using chicken (SCk1772) and human (HK3263) H7N9 isolates that differed by four amino acids, including the host determinant PB2 residue 627, we observed that both viruses transmitted efficiently among chickens via direct contact but inefficiently via the airborne route. Chicken-to-ferret transmission via the airborne route was observed, along with the detection of viral genome in the air at low copy numbers. In ferrets, HK3263 transmitted more efficiently than SCk1772 via direct contact. During the transmission of SCk1772 that contained E and HK3263 that contained V/K/E polymorphism at PB2 residue 627, positive selections of E627 and K627 were observed in chickens and ferrets, respectively. In addition, PB2-V627 was transmitted and stably maintained in both avian and mammalian species. Our results support applying intervention strategies that minimize direct and indirect contact at the poultry markets during epidemics.


Subject(s)
Influenza A Virus, H7N9 Subtype/genetics , Influenza in Birds/transmission , Influenza in Birds/virology , Orthomyxoviridae Infections/veterinary , Polymorphism, Genetic , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , Zoonoses/transmission , Zoonoses/virology , Air Microbiology , Animals , Chickens/virology , Ferrets/virology , Genome, Viral , Host-Pathogen Interactions/genetics , Humans , Influenza A Virus, H7N9 Subtype/isolation & purification , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza, Human/transmission , Influenza, Human/virology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Poultry Diseases/transmission , Poultry Diseases/virology , RNA, Viral/genetics , RNA, Viral/isolation & purification , Species Specificity
10.
RNA ; 21(1): 36-47, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25404565

ABSTRACT

The error-prone RNA-dependent RNA polymerase (RdRP) and external selective pressures are the driving forces for RNA viral diversity. When confounded by selective pressures, it is difficult to assess if influenza A viruses (IAV) that have a wide host range possess comparable or distinct spontaneous mutational frequency in their RdRPs. We used in-depth bioinformatics analyses to assess the spontaneous mutational frequencies of two RdRPs derived from human seasonal (A/Wuhan/359/95; Wuhan) and H5N1 (A/Vietnam/1203/04; VN1203) viruses using the mini-genome system with a common firefly luciferase reporter serving as the template. High-fidelity reverse transcriptase was applied to generate high-quality mutational spectra which allowed us to assess and compare the mutational frequencies and mutable motifs along a target sequence of the two RdRPs of two different subtypes. We observed correlated mutational spectra (τ correlation P < 0.0001), comparable mutational frequencies (H3N2:5.8 ± 0.9; H5N1:6.0 ± 0.5), and discovered a highly mutable motif "(A)AAG" for both Wuhan and VN1203 RdRPs. Results were then confirmed with two recombinant A/Puerto Rico/8/34 (PR8) viruses that possess RdRP derived from Wuhan or VN1203 (RG-PR8×Wuhan(PB2, PB1, PA, NP) and RG-PR8×VN1203(PB2, PB1, PA, NP)). Applying novel bioinformatics analysis on influenza mutational spectra, we provide a platform for a comprehensive analysis of the spontaneous mutation spectra for an RNA virus.


Subject(s)
Influenza A Virus, H5N1 Subtype/genetics , Mutation Rate , Amino Acid Substitution , Animals , DNA Mutational Analysis , Female , Genes, Viral , HEK293 Cells , Humans , Influenza A Virus, H5N1 Subtype/enzymology , Lung/virology , Mice, Inbred C57BL , Models, Genetic , RNA-Dependent RNA Polymerase/physiology , Viral Proteins/physiology
11.
Nat Commun ; 5: 4794, 2014 Sep 03.
Article in English | MEDLINE | ID: mdl-25183443

ABSTRACT

Genetic diversity of influenza A viruses (IAV) acquired through the error-prone RNA-dependent RNA polymerase (RdRP) or through genetic reassortment enables perpetuation of IAV in humans through epidemics or pandemics. Here, to assess the biological significance of genetic diversity acquired through RdRP, we characterize an IAV fidelity variant derived from passaging a seasonal H3N2 virus in the presence of ribavirin, a purine analogue that increases guanosine-to-adenosine mutations. We demonstrate that a single PB1-V43I mutation increases selectivity to guanosine in A/Wuhan/359/95 (H3N2) and A/Vietnam/1203/04 (H5N1) viruses. The H5N1 PB1-V43I-recombinant virus replicates to comparable titres as the wild-type virus in vitro or in the mouse lungs. However, a decrease in viral population diversity at day 3 post inoculation is associated with a tenfold reduced lethality and neurotropism in mice. Applying a fidelity variant with reduced mutational frequency, we provide direct experimental evidence for the role of genetic diversity in IAV pathogenesis.


Subject(s)
Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H5N1 Subtype/genetics , Mutation/drug effects , RNA-Dependent RNA Polymerase/genetics , Reassortant Viruses/genetics , Viral Proteins/genetics , Adenosine/genetics , Animals , Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Female , Genetic Variation , Guanosine/genetics , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/pathogenicity , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , RNA-Dependent RNA Polymerase/metabolism , Reassortant Viruses/pathogenicity , Ribavirin/pharmacology , Survival Analysis , Viral Proteins/metabolism , Viral Tropism
12.
J Infect Dis ; 210(12): 1900-8, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-24951824

ABSTRACT

BACKGROUND: Neuraminidase (NA) inhibitors are the only licensed therapeutic option for human zoonotic H7N9 infections. An NA-R292K mutation that confers broad-spectrum resistance to NA inhibitors has been documented in H7N9 patients after treatment. METHODS: We evaluated the transmission potential of a human influenza A H7N9 isolate with a NA-R292K mutation in the ferret model followed by genotyping assay to monitor its competitive fitness in vivo. RESULTS: Plaque-purified A/Shanghai/1/2013 wild-type and NA-R292K viruses transmitted at comparable efficiency to direct or respiratory droplet contact ferrets. In ferrets inoculated with the plaque-purified A/Shanghai/1/2013 NA-R292K virus with dominant K292 (94%), the resistant K292 genotype was outgrown by the wild-type R292 genotype during the course of infection. Transmission of the resistant K292 genotype was detected in 3/4 direct contact and 3/4 respiratory droplet contact ferrets at early time points but was gradually replaced by the wild-type genotype. In the respiratory tissues of inoculated or infected ferrets, the wild-type R292 genotype dominated in the nasal turbinate, whereas the resistant K292 genotype was more frequently detected in the lungs. CONCLUSIONS: The NA inhibitor-resistant H7N9 virus with the NA-R292K mutation may transmit among ferrets but showed compromised fitness in vivo while in competition with the wild-type virus.


Subject(s)
Drug Resistance, Viral , Influenza A Virus, H7N9 Subtype/enzymology , Influenza A Virus, H7N9 Subtype/physiology , Mutation, Missense , Neuraminidase/genetics , Orthomyxoviridae Infections/virology , Viral Proteins/genetics , Animals , Disease Models, Animal , Ferrets , Influenza A Virus, H7N9 Subtype/drug effects , Influenza A Virus, H7N9 Subtype/growth & development , Male , Neuraminidase/metabolism , Orthomyxoviridae Infections/transmission , Viral Proteins/metabolism
13.
Influenza Other Respir Viruses ; 8(2): 235-42, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24118862

ABSTRACT

OBJECTIVES: The main function of influenza neuraminidase (NA) involves enzymatic cleavage of sialic acid from the surface of host cells resulting in the release of the newly produced virions from infected cells, as well as aiding the movement of virions through sialylated mucus present in the respiratory tract. However, there has previously been little information on the binding affinity of different forms of sialylated glycan with NA. Our objectives were then to investigate both sialic acid binding and cleavage of neuraminidase at an atomic resolution level. DESIGN: Nuclear magnetic resonance (NMR) spectroscopy was used to investigate pH and temperature effects on binding and cleavage as well as to interrogate the selectivity of human-like or avian-like receptors for influenza neuraminidase N1 derived from a range of different influenza virus strains including human seasonal H1N1, H1N1pdm09 and avian H5N1. RESULTS: We demonstrated that an acidic pH and physiological temperature are required for efficient NA enzymatic activity; however a change in the pH had a minimum effect on the NA-sialic acid binding affinity. Our data comparing α-2,3- and α-2,6-sialyllactose indicated that the variation in neuraminidase activity on different ligands correlated with a change in binding affinity. Epitope mapping of the sialylglycans interacting with NAs from different viral origin showed different binding profiles suggesting that different binding conformations were adopted. CONCLUSIONS: The data presented in this study demonstrated that physicochemical conditions (pH in particular) could affect the NA enzymatic activity with minor effect on ligand binding. NA cleavage specificity seemed to be associated with a difference in binding affinity to different ligands, suggesting a relationship between the two events. These findings have implications regarding the replication cycle of influenza infection in the host where different sialidase activities would influence penetration through the respiratory mucin barrier and the release of the newly generated virus from the infected cells.


Subject(s)
Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H5N1 Subtype/enzymology , Neuraminidase/metabolism , Sialic Acids/metabolism , Substrate Specificity , Viral Proteins/metabolism , Animals , Birds , Enzyme Stability , Humans , Hydrogen-Ion Concentration , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza in Birds/virology , Influenza, Human/virology , Magnetic Resonance Spectroscopy , Neuraminidase/chemistry , Protein Binding , Temperature , Viral Proteins/chemistry
14.
J Virol ; 86(19): 10558-70, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22811535

ABSTRACT

Limited antiviral compounds are available for the control of influenza, and the emergence of resistant variants would further narrow the options for defense. The H275Y neuraminidase (NA) mutation, which confers resistance to oseltamivir carboxylate, has been identified among the seasonal H1N1 and 2009 pandemic influenza viruses; however, those H275Y resistant variants demonstrated distinct epidemiological outcomes in humans. Specifically, dominance of the H275Y variant over the oseltamivir-sensitive viruses was only reported for a seasonal H1N1 variant during 2008-2009. Here, we systematically analyze the effect of the H275Y NA mutation on viral fitness and transmissibility of A(H1N1)pdm09 and seasonal H1N1 influenza viruses. The NA genes from A(H1N1)pdm09 A/California/04/09 (CA04), seasonal H1N1 A/New Caledonia/20/1999 (NewCal), and A/Brisbane/59/2007 (Brisbane) were individually introduced into the genetic background of CA04. The H275Y mutation led to reduced NA enzyme activity, an increased K(m) for 3'-sialylactose or 6'-sialylactose, and decreased infectivity in mucin-secreting human airway epithelial cells compared to the oseltamivir-sensitive wild-type counterparts. Attenuated pathogenicity in both RG-CA04(NA-H275Y) and RG-CA04 × Brisbane(NA-H275Y) viruses was observed in ferrets compared to RG-CA04 virus, although the transmissibility was minimally affected. In parallel experiments using recombinant Brisbane viruses differing by hemagglutinin and NA, comparable direct contact and respiratory droplet transmissibilities were observed among RG-NewCal(HA,NA), RG-NewCal(HA,NA-H275Y), RG-Brisbane(HA,NA-H275Y), and RG-NewCal(HA) × Brisbane(NA-H275Y) viruses. Our results demonstrate that, despite the H275Y mutation leading to a minor reduction in viral fitness, the transmission potentials of three different antigenic strains carrying this mutation were comparable in the naïve ferret model.


Subject(s)
Drug Resistance, Viral , Influenza A Virus, H1N1 Subtype/genetics , Mutation , Neuraminidase/genetics , Oseltamivir/pharmacology , Animals , Antigens/metabolism , Antiviral Agents/pharmacology , Dogs , Ferrets , HEK293 Cells , Humans , Kinetics , Male , Mucins/metabolism , Virus Replication
15.
Proc Natl Acad Sci U S A ; 108(34): 14264-9, 2011 Aug 23.
Article in English | MEDLINE | ID: mdl-21825167

ABSTRACT

A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. To identify molecular determinants that allowed efficient transmission of the pandemic H1N1 virus among humans, we evaluated the direct-contact and respiratory-droplet transmissibility in ferrets of representative swine influenza viruses of different lineages obtained through a 13-y surveillance program in southern China. Whereas all viruses studied were transmitted by direct contact with varying efficiency, respiratory-droplet transmissibility (albeit inefficient) was observed only in the TRsw-like A/swine/Hong Kong/915/04 (sw915) (H1N2) virus. The sw915 virus had acquired the M gene derived from EAsw and differed from the gene constellation of the pandemic H1N1 virus by the neuraminidase (NA) gene alone. Glycan array analysis showed that pandemic H1N1 virus A/HK/415742/09 (HK415742) and sw915 possess similar receptor-binding specificity and affinity for α2,6-linked sialosides. Sw915 titers in differentiated normal human bronchial epithelial cells and in ferret nasal washes were lower than those of HK415742. Introducing the NA from pandemic HK415742 into sw915 did not increase viral replication efficiency but increased respiratory-droplet transmissibility, despite a substantial amino acid difference between the two viruses. The NA of the pandemic HK415742 virus possessed significantly higher enzyme activity than that of sw915 or other swine influenza viruses. Our results suggest that a unique gene constellation and hemagglutinin-neuraminidase balance play a critical role in acquisition of efficient and sustained human-to-human transmissibility.


Subject(s)
Ferrets/virology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H1N1 Subtype/physiology , Neuraminidase/metabolism , Orthomyxoviridae Infections/transmission , Pandemics , Respiratory System/virology , Animals , Genome, Viral/genetics , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H1N1 Subtype/genetics , Kinetics , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Polysaccharides/metabolism , Protein Binding , Receptors, Virus/metabolism , Recombination, Genetic/genetics , Respiratory System/pathology , Seasons , Substrate Specificity , Swine , Tropism , Virus Replication/physiology
16.
Appl Environ Microbiol ; 68(6): 2924-33, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12039751

ABSTRACT

A 13-kb DNA fragment containing oriC and the flanking genes thdF, orf900, yidC, rnpA, rpmH, oriC, dnaA, dnaN, recF, and gyrB was cloned from the gram-negative plant pathogen Xanthomonas campestris pv. campestris 17. These genes are conserved in order with other eubacterial oriC genes and code for proteins that share high degrees of identity with their homologues, except for orf900, which has a homologue only in Xylella fastidiosa. The dnaA/dnaN intergenic region (273 bp) identified to be the minimal oriC region responsible for autonomous replication has 10 pure AT clusters of four to seven bases and only three consensus DnaA boxes. These findings are in disagreement with the notion that typical oriCs contain four or more DnaA boxes located upstream of the dnaA gene. The X. campestris pv. campestris 17 attB site required for site-specific integration of cloned fragments from filamentous phage phiLf replicative form DNA was identified to be a dif site on the basis of similarities in nucleotide sequence and function with the Escherichia coli dif site required for chromosome dimer resolution and whose deletion causes filamentation of the cells. The oriC and dif sites were located at 12:00 and 6:00, respectively, on the circular X. campestris pv. campestris 17 chromosome map, similar to the locations found for E. coli sites. Computer searches revealed the presence of both the dif site and XerC/XerD recombinase homologues in 16 of the 42 fully sequenced eubacterial genomes, but eight of the dif sites are located far away from the 6:00 point instead of being placed opposite the cognate oriC. The differences in the relative position suggest that mechanisms different from that of E. coli may participate in the control of chromosome replication.


Subject(s)
Chromosomes, Bacterial , DNA-Binding Proteins/genetics , Drosophila Proteins , Viral Proteins/genetics , Xanthomonas campestris/genetics , Amino Acid Sequence , Base Sequence , Chromosome Mapping , Cloning, Molecular , DNA Replication , DNA, Bacterial/analysis , DNA-Binding Proteins/isolation & purification , Molecular Sequence Data , Origin Recognition Complex , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...