Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 345: 123457, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38341064

ABSTRACT

The remoteness and low population in the Arctic allow us to study global environmental processes, where the analysis of indicators can provide useful information about local and distant pollution sources. Fresh snow represents a convenient indicator of regional and transboundary atmospheric contamination sources, entrapping aerosols, and particulates like a natural autosampler of the environment. Lead stable isotopes are widely used to trace and monitor local and distant pollution sources. However, the behavior of Pb within different snow components is still not thoroughly studied, and its significance could be underestimated if only larger particulates are accounted for. We collected snow and samples from potential sources (fuel, rocks, coal) in three Arctic localities: Nuuk (Greenland), Reykjavik (Iceland), and Longyearbyen (Svalbard). We separated the filtrate from the filter residue through 0.45 µm nitrocellulose membranes to isolate the low-diameter particles associated with long-range transport from larger particles of mostly local natural origin. Filtrates yielded higher EFs (enrichment factor as the Pb/Al ratio relative to the upper crust) than filtration residues (80 ± 104 and 2.1 ± 1.1, respectively), and Pb isotope signals similar to fuel and coal (206Pb/207Pb are 1.199 ± 0.028 in coal, 1.168 ± 0.029 in filtrates, 1.163 ± 0.013 in fuel, 1.137 ± 0.045 in residues, and 0.985 ± 0.020 in rocks). In contrast to filtrates, the filter residues present wider ranges of Pb isotope compositions and crustal contributions and lower EFs, so we suggest that filtrate contains Pb from fuel combustion more selectively, while the residue carries a more considerable contribution of local mineral dust that can mask the contribution of other anthropogenic or distant natural sources. These findings add weight to the notion that filtrates are a more selective measure of metal deposition from long-range anthropogenic emissions compared to analyzing bulk melted snow or only filter residues.


Subject(s)
Lead , Snow , Lead/analysis , Snow/chemistry , Isotopes/analysis , Environmental Pollution/analysis , Dust/analysis , Coal/analysis , Environmental Monitoring
2.
Environ Pollut ; 328: 121609, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37044255

ABSTRACT

Transect sampling is an under-exploited tool in isotope studies of atmospheric pollution. Few studies have combined Zn and Pb isotope ratios to investigate whether atmospheric pollution at a receptor site is dominated by a different anthropogenic source of each of these toxic elements. It has been also unclear whether pollution abatement strategies in Central Europe have already resulted in regionally well-mixed background isotope signature of atmospheric Zn and Pb. Zinc and lead isotope ratios were determined in snow collected along a rural transect downwind from the Upper Silesian industrial area (southern Poland). Spatial and temporal gradients in δ66Zn and 206Pb/207Pb ratios at four sites were compared with those of ore and coal collected in eight Czech and Polish mining districts situated at distances of up to 500 km. Snow pollution was extremely high 8 km from Olkusz in 2011 (1670 µg Zn L-1; 240 µg Pb L-1), sharply decreased between 2011 and 2018, and remained low in 2019-2021. Snow pollution was lower at sites situated 28-68 km from Olkusz. Across study sites, mean δ66Zn and 206Pb/207Pb ratios of snow were -0.13‰ and 1.155, respectively. With an increasing distance from Olkusz, the δ66Zn values first increased and then decreased, while the 206Pb/207Pb ratios first decreased and then increased. The δ66Zn values in snow plotted closer to those of Upper Silesian ores (-0.20‰) than to the δ66Zn values of Upper Silesian stone coal (0.52‰), showing predominance of smelter-derived over power-plant derived Zn pollution. The 206Pb/207Pb ratios of Upper Silesian coal (1.171) and Upper Silesian ores (1.180) were higher compared to those of snow. A206Pb/207Pb vs.208Pb/207Pb plot identified legacy pollution from leaded gasoline as the low-radiogenic mixing end-member. Across the transect sites, only the last sampling campaign exhibited a high degree of isotope homogenization for both Zn and Pb.


Subject(s)
Environmental Pollution , Lead , Zinc/analysis , Isotopes/analysis , Coal , Environmental Monitoring/methods
3.
Sci Total Environ ; 858(Pt 1): 159763, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36309271

ABSTRACT

The Atalanti basin is an intensively cultivated area in central Greece, facing groundwater quality deterioration threats due to natural and anthropogenic-related contamination sources. A combination of statistical and hydrogeochemical techniques, and stable isotope compositions (δ2H-H2O and δ18Ο-Η2Ο, δ15Ν-ΝΟ3- and δ18Ο-ΝΟ3-, δ34S-SO42- and δ18O-SO42-) were applied to elucidate the origin of salinity and nitrate contamination, and shed light on the potential associations between geogenic Cr(VI) and NO3- sources and transformations. Nitrate and Cr(VI) concentrations reached up to 337 mg L-1 and 76.1 µg L-1, respectively, exceeding WHO threshold values in places. The cluster of samples with the high salinity was mostly influenced by irrigation return flow and marine aerosols, and less by seawater intrusion, as evidenced by the ionic ratios (e.g., Na+/Cl-) and the stable isotopes of oxygen and hydrogen in water, and sulphur and oxygen in sulphates. The δ15Ν-ΝΟ3- and δ18O-NO3- values ranged from +2.0 ‰ to +14.5 ‰ and + 0.3 ‰ to +11.0 ‰, respectively. We found that the dominant sources of NO3- in groundwater were fertilizers in the central part of the area and sewage waste in the northern part around the residential area of Livanates. The occurrence of denitrification was evident in the northern part of the basin, where the DO levels were lowest (≤ 2.2 mg L-1), whereas nitrification of NH4+-fertilizers prevailed in the central part. Elevated Cr(VI) values (≥ 20 µg/l) were associated with the lowest deviation of the measured from the theoretical nitrification δ18Ο-NO3- values, whereas the lowest Cr(VI) values were observed in the denitrified water samples. Our isotope findings revealed the strong influence of redox conditions on the biogeochemical transformations of N species and the mobilization of Cr(VI) that will help improve the understanding of the fate of these contaminants from the unsaturated zone to the groundwater in areas of agricultural and urban land use.


Subject(s)
Groundwater , Water Pollutants, Chemical , Nitrates/analysis , Fertilizers , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Nitrogen Isotopes/analysis , Groundwater/chemistry , Oxygen , Water
4.
Environ Sci Technol ; 55(12): 8035-8044, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34042419

ABSTRACT

In highly industrialized, densely populated parts of Central Europe, mobilization of legacy Zn pollution from forest ecosystems may negatively affect the quality of water resources. To test this hypothesis, we determined the 66Zn/64Zn isotope ratios of 15 Zn reservoirs and fluxes in an acidified, spruce die-back affected mountain-slope catchment in northern Czech Republic. The δ66Zn values of precipitation, organic horizon, and runoff were statistically indistinguishable. In contrast, δ66Zn values of bedrock orthogneiss and mineral soil were significantly different from δ66Zn values of runoff. The magnitude of within-site Zn isotope fractionations appeared to be relatively small. Despite the large potential source of Zn in bedrock, runoff exported mostly young pollutant Zn that had been temporarily stored in the organic horizon. This conclusion was corroborated by comparing Zn input-output mass balances in the polluted northern catchment and in a relatively unpolluted catchment situated 250 km to the south. Seven-times higher Zn export via runoff at the northern site was controlled by a combination of 10-times higher atmospheric Zn input and five-times higher DOC leaching, compared to the southern site. In industrial areas, atmospherically deposited Zn is leached from headwater catchments in a direct analogy to leaching of highly toxic pollutant Pb.


Subject(s)
Environmental Pollutants , Zinc , Czech Republic , Ecosystem , Environmental Monitoring , Europe , Soil
5.
Environ Sci Technol ; 55(11): 7430-7444, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33970606

ABSTRACT

Cadmium (Cd) isotopes are known to fractionate during complexation with various environmentally relevant surfaces and ligands. Our results, which were obtained using (i) batch experiments at different Cd concentrations, ionic strengths, and pH values, (ii) modeling, and (iii) infrared and X-ray absorption spectroscopies, highlight the preferential enrichment of light Cd isotopes bound to humic acid (HA), leaving the heavier Cd pool preferentially in solution (Δ114/110CdHA-Cd(aq) of -0.15 ± 0.01‰). At high ionic strengths, Cd isotope fractionation mainly depends on its complexation with carboxylic sites. Outer-sphere complexation occurs at equilibrium together with inner-sphere complexation as well as with the change of the first Cd coordination and its hydration complexes in solution. At low ionic strengths, nonspecific Cd binding induced by electrostatic attractions plays a dominant role and promotes Cd isotope fractionation during complexation. This significant outcome elucidates the mechanisms involved in HA-Cd interactions. The results can be used during (i) fingerprinting the available Cd in soil solution after its complexation with solid or soluble natural organic matter and (ii) evaluating the contribution of Cd complexation with organic ligands and phytoplankton-derived debris versus Cd assimilation by phytoplankton in seawater.


Subject(s)
Humic Substances , Soil Pollutants , Cadmium/analysis , Isotopes , Soil , Soil Pollutants/analysis
6.
Sci Total Environ ; 771: 144827, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33529817

ABSTRACT

Understanding the links between sources of magnetic particles and bioaccessibility of metal(loids) in environmental sampling media is crucial for better evaluating human health risks, although relevant information in the scientific literature is scarce. Here, soil, road and house dust samples from a heavy industrial area in Greece were characterized in a multidisciplinary study combining magnetic measurements, SEM/EDS analyses, bioaccessibility measurements and Pb isotopic analyses of bioaccessible Pb. The oral and inhalable bioaccessible fractions of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn were assessed by applying simulated gastric and lung solutions. SEM/EDS analysis revealed the abundant presence of anthropogenic Fe-containing spherules of industrial origin in all sampling media, often containing minor contents of Cr, Cu, Mn, Pb and Zn. The inhalation bioaccessibility (%) in all environmental compartments was higher than the oral one for most elements analyzed in the present study. Clear associations between magnetic susceptibility and bioaccessible amounts of most of analyzed elements were encountered for the soil and road dust. The isotopic analyses of bioaccessible Pb showed that there are significant differences in the isotopic ratios between total and bioaccessible Pb. We conclude that Pb solubilized by the simulated gastric and lung extractions is principally anthropogenic, representing a mixture of industrial Pb and Pb related to the past usage of leaded petrol. Low values of 206Pb/207Pb were accompanied by high bioaccessible contents of Cd, Pb and Zn indicating that anthropogenic (mostly industrial) sources exert influence on the bioaccessible forms of these metals. Coupling magnetic and bioaccessibility measurements with stable isotopic technique of bioaccessible Pb is more reliable for determining Pb and other metal sources with high oral and inhalation bioaccessibility.


Subject(s)
Metals, Heavy , Soil Pollutants , Cities , Dust/analysis , Environmental Monitoring , Greece , Humans , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
7.
Environ Pollut ; 265(Pt B): 114949, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32563118

ABSTRACT

Cadmium (Cd) and its forms has recently been a focus of attention due to its toxic effects on human health and the environment. We evaluated the atmospheric deposition of Cd during three consecutive winter seasons (2009-2011) at 10 mountain-top locations in the Czech Republic along the borders with Poland, Germany, Austria and Slovakia. Cadmium concentrations of soluble and insoluble forms in both horizontal (rime) and vertical (snow) deposition were determined using sector-field ICP-MS. Across the sites, 94% of the total winter Cd deposition occurred in the soluble (environmentally available) Cd form. Mean concentrations of soluble Cd in rime were six times higher than in snow (398 vs. 66 ng L-1). Vertical deposition contributed as much as 41% to the total winter Cd input. Between-site variability in Cd deposition was large, ranging between 13 and 108 µg m-2 winter-1. Overall, Cd concentrations in winter deposition did not reach the drinking water limits and did not pose a direct threat for human health. Long-term trends (1996-2017) in winter Cd deposition were evaluated at six GEOMON sites (a monitoring network of small forested catchments). Since 1996, Cd input in winter atmospheric deposition decreased by 73-93%. Simultaneously, we found declines in between-site variability in winter Cd inputs. The highest recent winter Cd inputs were found at sites located in the northeast of the country. A north-south pollution gradient, which has frequently been mentioned in the literature, was not observed, with both northwestern sites and southern sites being among those with the lowest Cd pollution. Backward trajectories of the HYSPLIT model for fresh snow samples identified Poland and Germany as major transboundary Cd pollution sources for the Czech Republic.


Subject(s)
Cadmium , Environmental Monitoring , Austria , Czech Republic , Europe , Germany , Humans , Poland , Seasons , Slovakia
8.
Sci Total Environ ; 725: 138300, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32302831

ABSTRACT

This study examines the metal(loid) contents (As, Cd, Cr, Cu, Mn, Ni, Pb, Sb, Tl and Zn) and Pb isotopes in different environmental compartments (soil, road dust, house dust) from the industrial vicinity of Volos, central Greece. The area surrounding two steel factories, a cement plant, an industrial area and the city core were considered as potential hot spots of metal(loid) contamination. Significant anthropogenic enrichments of Cd, Pb and Zn in relation to local baseline were identified for the soil (median Enrichment Factors of 7, 15 and 8, respectively) and road dusts around the steel factory located at Velestino area. The high contents of As, Sb and Tl in the soil and road dust around the cement plant are attributed to natural sources of contamination associated with adjacent mineralization. The soil samples in the city core exhibited moderate enrichments with respect to typical tracers (Pb, Zn) of anthropogenic contamination in urban areas. Anthropogenic influences in terms of metal(loid) concentrations were more pronounced for the road and house dust material. The Pb isotopic ratios of soil (206Pb/207Pb = 1.154 to 1.194), road dust (206Pb/207Pb = 1.144 to 1.174) and house dust (206Pb/207Pb = 1.129 to 1.171) were between those of the local bedrock and anthropogenic Pb sources. Industrial Pb from the steel plant was the predominant anthropogenic Pb source with relative contributions of ~49% for the soil, ~42% for the road dust and ~44% for the house dust samples. For the road and house dust material, the geochemical signature obtained from Pb isotopic compositions and elemental ratios suggests additional contributors from vehicular emissions. The results of this study demonstrate the suitability of soil to trace natural and anthropogenic impacts in industrial areas and the sensitivity of the road and house dust material to record anthropogenic (industrial and vehicular-derived) contamination in such environments.

9.
Environ Pollut ; 260: 114057, 2020 May.
Article in English | MEDLINE | ID: mdl-32004969

ABSTRACT

In this study, samples of soil and particulate matter obtained from the highly industrialized region of Ostrava, Czech Republic, are used for the toxicity evaluation of the selected metal(loid)s (Cd, Cr, Cu, Ni, Pb, Zn, As). We investigated the samples from sites supposedly affected the most by the local pollution sources using mineralogical techniques (XRD, SEM/EDS) to understand the solid speciation of the contaminants as the crucial factor affecting their release. Although the bulk composition was defined by common silicates and oxides that are rather resistant to leaching, the presence of tiny Ni, Pb, and/or Zn sulfate-like droplets indicated a potential increase of the solubility of these metals. In vitro tests simulating gastric and lung fluids were used to assess the exposure risk for humans, as well as metal(loid) bioaccessibility. Based on the results, the potential risk for the observed age group (3-year-old children) could be recognized, particularly in the cases of As, Pb and Cd for both oral and inhalation exposure. Arsenic exhibits high bioaccessibility (7.13-79.7%, with the median values of 10.6 and 15.6 for SGL and SLF, respectively), high daily intake (1.4- to 8.5-fold higher than the tolerable daily intake) and high concentrations in atmospheric PM10 (2.5 times the tolerable concentration in air). In contrast, Ni exceeded tolerable concentrations in the atmosphere up to 20-fold, but its bioaccessibility remained relatively low (0.1-22%), and Ni did not pose a major threat to human health. Cadmium, Pb and As originating from industrial activities and domestic heating have been suggested to be the most important pollutants (tolerable daily intake was exceeded by up to 74-, 34- and 8-fold for Cd, Pb and As, respectively).


Subject(s)
Environmental Exposure/statistics & numerical data , Metals, Heavy , Soil Pollutants , Child, Preschool , Czech Republic , Environmental Monitoring/methods , Humans , Metals , Particulate Matter , Risk Assessment , Soil
10.
Environ Int ; 127: 848-857, 2019 06.
Article in English | MEDLINE | ID: mdl-31075676

ABSTRACT

This study investigates redox transitions associated with the adsorption of Cr(VI) on commonly occurring soil components (silicates, oxides and humic acids) and their synthetic mixtures by coupling the mechanistic surface complexation modeling with spectroscopic and isotopic analyses. The mixtures of soil components were prepared to reflect the composition of the real anthroposol sample, determined by X-ray Powder Diffraction (XRD), total organic carbon (TOC) measurement and extraction methods. The effect of different initial Cr(VI) concentrations (2×10-2, 5×10-4, 10-4, 10-5, and 10-6M), background electrolyte (10-3, 10-2, and 10-1M KNO3), pH values (3-9), and sorbate/sorbent ratios (2g/L - 20g/L) were investigated. Maghemite and ferrihydrite were confirmed to be the main phases controlling Cr(VI) adsorption with increasing Cr(VI) concentration. Humic acids were primarily responsible for Cr(VI) reduction, especially at low pH values. The reduction of Cr(VI) was also proved in case of illite and kaolinite by XAS and isotopic analyses. Illite revealed higher reduction capacity in comparison with kaolinite based on XAS measurements. Chromium isotopic fractionation, resulting from Cr(VI) reduction, was the highest in the case of humic acids, followed by kaolinite and illite. However, a dissolution of intrinsic Cr originally present within kaolinite and illite might affect the final Cr isotopic composition of the supernatants due to its different Cr isotopic signature. In general, the combination of three different approaches was confirmed to offer more comprehensive information about Cr(VI) adsorption and/or reduction in soils. Detailed studies using soil mixtures can help to predict how the soil components affect Cr(VI) behavior in natural soils and possibly could improve the environmental remediation processes.


Subject(s)
Chromium/chemistry , Environmental Restoration and Remediation , Ferric Compounds/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Adsorption
11.
Sci Rep ; 9(1): 4570, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30872681

ABSTRACT

Molybdenum (Mo) and its isotopes have been used to retrieve palaeoenvironmental information on the ocean-atmosphere system through geological time. Their application has so far been restricted to rocks least affected by severe metamorphism and deformation, which may erase or alter palaeoenvironmental signals. Environmental Mo-isotope signatures can be retrieved if the more manganese (Mn)-enriched rocks are isotopically depleted and the maximum range of δ98Mo values is close to the ~2.7‰ Mo-isotope fractionation known from Mo sorption onto Mn oxides at low temperature. Here, we show that the Morro da Mina Mn-ore deposit in Minas Gerais, Brazil, contains Mn-silicate-carbonate ore and associated graphitic schist that likely preserve δ98Mo of Palaeoproterozoic seawater, despite a metamorphic overprint of at least 600 °C. The extent of Mo-isotope fractionation between the Mn-silicate-carbonate ore and the graphitic schist is similar to modern Mn-oxide precipitates and seawater. Differences in δ98Mo signals are broadly reflected in cerium (Ce) anomalies, which suggest an oxic-anoxic-stratified Palaeoproterozoic ocean.

12.
J Hazard Mater ; 343: 78-85, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-28941840

ABSTRACT

Thallium (Tl) concentration and isotope data have been recorded for contaminated soils and a set of industrial wastes that were produced within different stages of Zn ore mining and metallurgical processing of Zn-rich materials. Despite large differences in Tl levels of the waste materials (1-500mgkg-1), generally small changes in ε205Tl values have been observed. However, isotopically lighter Tl was recorded in fly ash (ε205Tl∼-4.1) than in slag (ε205Tl∼-3.3), implying partial isotope fractionation during material processing. Thallium isotope compositions in the studied soils reflected the Tl contamination (ε205Tl∼-3.8), despite the fact that the major pollution period ended more than 30 years ago. Therefore, we assume that former industrial Tl inputs into soils, if significant, can potentially be traced using the isotope tracing method. We also suggest that the isotope redistributions occurred in some soil (subsurface) horizons, with Tl being isotopically heavier than the pollution source, due to specific sorption and/or precipitation processes, which complicates the discrimination of primary Tl. Thallium isotope analysis proved to be a promising tool to aid our understanding of Tl behavior within the smelting process, as well as its post-depositional dynamics in the environmental systems (soils).

13.
Sci Total Environ ; 621: 9-17, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29175624

ABSTRACT

The copper (Cu) content and isotopic composition were studied in soils and in pine tree rings at locations close to and far from the Cu smelter, located at Kitwe, Zambia. The soil in the remote area contained 25-75mgkg-1 Cu, whereas the soil close to the smelter contained 207-44,000mgkg-1 Cu. The δ65Cu at the remote area and close to the smelter varied in the range -0.40 to -0.11‰, and -0.44 to 0.01‰ respectively. The δ65Cu of the surface soil at both profiles (-0.44 to -0.40‰) is similar to the isotopic composition of the concentrates processed in the smelter (-0.75 to -0.45‰), i.e. both locations are affected by Cu ore dust. The increase in the δ65Cu in the direction towards the centre of the profile is caused by the oxidative dissolution of Cu(I) from ore minerals, during which heavier Cu is released. In deeper parts of the profile, there is a slight decrease in δ65Cu because of easier mobilisation of the lighter isotope. The tree rings at the two locations differ in the total contents and isotopic composition. At the less contaminated site, the Cu contents equal 0.4 to 1.1mgkg-1 while, at the polluted site, the Cu contents vary in the range 3 to 47mgkg-1. Whereas, at the less contaminated location, the tree rings are substantially enriched in lighter Cu (δ65Cu=-0.76 to -2.2‰), at locations close to the smelter the tree rings have an isotopic composition (-0.31 to -0.88‰) similar to that of the contaminated soil or processed ore. The isotopic compositions of the tree rings close to the smelter are affected particularly by interception of dust containing Cu ore. The δ13C in tree rings demonstrate the interconnection of acidification and Cu mobility.

14.
Chemosphere ; 193: 230-236, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29136569

ABSTRACT

After the phasing out of leaded gasoline, Pb emissions to the atmosphere dramatically decreased, and other sources became more significant. The contribution of unleaded gasoline has not been sufficiently recognized; therefore, we evaluated the impact of Pb from unleaded gasoline in a relatively pristine area in Subarctic NE Norway. The influence of different endmembers (Ni slag and concentrate from the Nikel smelter in Russia, PM10 filters, and traffic) on the overall Pb emissions was determined using various environmental samples (snow, lichens, and topsoils) and Pb isotope tracing. We found a strong relationship between Pb in snow and the Ni smelter. However, lichen samples and most of the topsoils were contaminated by Pb originating from the current use of unleaded gasoline originating from Russia. Historical leaded and recent unleaded gasoline are fully distinguishable using Pb isotopes, as unleaded gasoline is characterized by a low radiogenic composition (206Pb/207Pb = 1.098 and 208Pb/206Pb = 2.060) and remains an unneglectable source of Pb in the region.


Subject(s)
Atmosphere/chemistry , Environmental Monitoring , Environmental Pollutants/analysis , Gasoline/analysis , Lead/analysis , Vehicle Emissions/analysis , Isotopes/analysis , Lichens/chemistry , Norway , Russia , Snow/chemistry
15.
Environ Monit Assess ; 189(9): 478, 2017 Aug 29.
Article in English | MEDLINE | ID: mdl-28852908

ABSTRACT

This study is a continuation of our preceding research identifying suitable environmental samples for the tracing of atmospheric pollution in industrial areas. Three additional types of environmental samples were used to characterise contamination sources in the industrial area of Ostrava city, Czech Republic. The region is known for its extensive metallurgical and mining activities. Fingerprinting of stable Pb isotopes was applied to distinguish individual sources of anthropogenic Pb. A wide range of 206Pb/207Pb ratios was observed in the investigated samples: 206Pb/207Pb = 1.168-1.198 in mosses; 206Pb/207Pb = 1.167-1.215 in soils and 206Pb/207Pb = 1.158-1.184 in tree cores. Black and brown coal combustion, as well as metallurgical activities, is the two main sources of pollution in the area. Fossil fuel burning in industry and households seems to be a stronger source of Pb emissions than from the metallurgical industry. Concentration analyses of tree rings showed that a significant increase in As concentrations occurred between 1999 and 2016 (from 0.38 mg kg-1 to 13.8 mg kg-1). This shift corresponds to the use of brown coal from Bílina, Czech Republic, with an increased As concentration. The burning of low-quality fuels in households remains a problem in the area, as small ground sources have a greater influence on the air quality than do industrial sources.


Subject(s)
Air Pollution/analysis , Coal Mining , Environmental Biomarkers , Environmental Monitoring/methods , Metallurgy , Arsenic/analysis , Bryophyta/chemistry , Czech Republic , Industrial Development , Isotopes/analysis , Lead/analysis , Soil/chemistry , Urbanization , Wood/chemistry
16.
Environ Pollut ; 228: 149-157, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28528262

ABSTRACT

The use of Ni and Cu isotopes for tracing contamination sources in the environment remains a challenging task due to the limited information about the influence of various biogeochemical processes influencing stable isotope fractionation. This work focuses on a relatively simple system in north-east Norway with two possible endmembers (smelter-bedrock) and various environmental samples (snow, soil, lichens, PM10). In general, the whole area is enriched in heavy Ni and Cu isotopes highlighting the impact of the smelting activity. However, the environmental samples exhibit a large range of δ60Ni (-0.01 ± 0.03‰ to 1.71 ± 0.02‰) and δ65Cu (-0.06 ± 0.06‰ to -3.94 ± 0.3‰) values which exceeds the range of δ60Ni and δ65Cu values determined in the smelter, i.e. in feeding material and slag (δ60Ni from 0.56 ± 0.06‰ to 1.00 ± 0.06‰ and δ65Cu from -1.67 ± 0.04‰ to -1.68 ± 0.15‰). The shift toward heavier Ni and Cu δ values was the most significant in organic rich topsoil samples in the case of Ni (δ60Ni up to 1.71 ± 0.02‰) and in lichens and snow in the case of Cu (δ65Cu up to -0.06 ± 0.06‰ and -0.24 ± 0.04‰, respectively). These data suggest an important biological and biochemical fractionation (microorganisms and/or metal uptake by higher plants, organo-complexation etc.) of Ni and Cu isotopes, which should be quantified separately for each process and taken into account when using the stable isotopes for tracing contamination in the environment.


Subject(s)
Copper/analysis , Environmental Monitoring/methods , Nickel/analysis , Chemical Fractionation , Environmental Pollution/statistics & numerical data , Isotopes/analysis , Metals , Norway , Snow , Soil
17.
Environ Pollut ; 220(Pt A): 286-297, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27667678

ABSTRACT

Samples of lichens, snow and particulate matter (PM10, 24 h) are used for the source identification of air pollution in the heavily industrialized region of Ostrava, Upper Silesia, Czech Republic. An integrated approach that uses different environmental samples for metal concentration and Pb isotope analyses was applied. The broad range of isotope ratios in the samples indicates a combination of different pollution sources, the strongest among them being the metallurgical industry, bituminous coal combustion and traffic. Snow samples are proven as the most relevant indicator for tracing metal(loid)s and recent local contamination in the atmosphere. Lichens can be successfully used as tracers of the long-term activity of local and remote sources of contamination. The combination of PM10 with snow can provide very useful information for evaluation of current pollution sources.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Atmosphere/chemistry , Environmental Monitoring/methods , Particulate Matter/analysis , Coal/analysis , Czech Republic , Industry , Isotopes/analysis , Lichens/metabolism , Metals/analysis , Snow/chemistry
18.
Environ Pollut ; 218: 1135-1146, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27613315

ABSTRACT

Copper (Cu) and zinc (Zn) isotope ratios can be used to fingerprint sources and dispersion pathways of pollutants in the environment. Little is known, however, about the potential of δ65Cu and δ66Zn values in liquid and solid forms of atmospheric deposition to distinguish between geogenic, industrial, local and remote sources of these potentially toxic base metals. Here we present Cu-Zn deposition fluxes at 10 mountain-top sites in the Czech Republic, a region affected by extremely high industrial emission rates 25 years ago. Additionally, we monitored isotope composition of Cu and Zn in vertical and horizontal atmospheric deposition at two sites. We compared δ65Cu and δ66Zn values in snow and rime, extracted by diluted HNO3 and concentrated HF. Cu and Zn isotope signatures of industrial pollution sources were also determined. Cu and Zn deposition fluxes at all study sites were minute. The mean δ65Cu value of atmospheric deposition (-0.07‰) was higher than the mean δ65Cu value of pollution sources (-1.17‰). The variability in δ65Cu values of atmospheric deposition was lower, compared to the pollution sources. The mean δ66Zn value of atmospheric deposition (-0.09‰) was slightly higher than the mean δ66Zn value of pollution sources (-0.23‰). The variability in δ66Zn values of atmospheric deposition was indistinguishable from that of pollution sources. The largest isotope differences (0.35‰) were observed between the insoluble and soluble fractions of atmospheric deposition. These differences may result from different sources of Cu/Zn for each fraction. The difference in isotope composition of soluble and insoluble particles appears to be a promising tool for pollution provenance studies in Central Europe.


Subject(s)
Air Pollution , Copper , Snow/chemistry , Zinc , Copper/analysis , Copper/chemistry , Czech Republic , Environmental Monitoring , Europe , Ice , Isotopes/analysis , Zinc/analysis , Zinc/chemistry
20.
J Hazard Mater ; 302: 114-119, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26452089

ABSTRACT

Our study represents ϵ(114/110) Cd NIST3108 values of materials resulting from anthropogenic activities such as coal burning, smelting, refining, metal coating, and the glass industry. Additionally, primary sources (ore samples, pigment, coal) processed in the industrial premises were studied. Two sphalerites, galena, coal and pigment samples exhibited ϵ(114/110) CdNIST3108 values of 1.0±0.2, 0.2±0.2, 1.3±0.1, -2.3±0.2 and -0.1±0.3, respectively. In general, all studied industrial processes were accompanied by Cd isotope fractionation. Most of the industrial materials studied were clearly distinguishable from the samples used as a primary source based on ϵ(114/110) Cd NIST3108 values. The heaviest ϵ(114/110) CdNIST3108 value of 58.6±0.9 was found for slag resulting from coal combustion, and the lightest ϵ(114/110) CdNIST3108 value of -23±2.5 was observed for waste material after Pb refinement. It is evident that ϵ(114/110) Cd NIST3108 values depend on technological processes, and in case of incomplete Cd transfer from source to final waste material, every industrial activity creates differences in Cd isotope composition. Our results show that Cd isotope analysis is a promising tool to track the origins of industrial waste products.

SELECTION OF CITATIONS
SEARCH DETAIL
...