Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22279558

ABSTRACT

BackgroundT cells are important in preventing severe disease from SARS-CoV-2, but scalable and field-adaptable alternatives to expert T cell assays are needed. The interferon-gamma release assay QuantiFERON platform was developed to detect T cell responses to SARS-CoV-2 from whole blood with relatively basic equipment and flexibility of processing timelines. Methods48 participants with different infection and vaccination backgrounds were recruited. Whole blood samples were analysed using the QuantiFERON SARS-CoV-2 assay in parallel with the well-established Protective Immunity from T Cells in Healthcare workers (PITCH) ELISpot, which can evaluate spike-specific T cell responses. AimsThe primary aims of this cross-sectional observational cohort study were to establish if the QuantiFERON SARS-Co-V-2 assay could discern differences between specified groups and to assess the sensitivity of the assay compared to the PITCH ELISpot. FindingsThe QuantiFERON SARS-CoV-2 distinguished acutely infected individuals (12-21 days post positive PCR) from naive individuals (p< 0.0001) with 100% sensitivity and specificity for SARS-CoV-2 T cells, whilst the PITCH ELISpot had reduced sensitivity (62.5%) for the acute infection group. Sensitivity with QuantiFERON for previous infection was 12.5% (172-444 days post positive test) and was inferior to the PITCH ELISpot (75%). Although the QuantiFERON assay could discern differences between unvaccinated and vaccinated individuals (55-166 days since second vaccination), the latter also had reduced sensitivity (55.5%) compared to the PITCH ELISpot (66.6%). ConclusionThe QuantiFERON SARS-CoV-2 assay showed potential as a T cell evaluation tool soon after SARS-CoV-2 infection but has lower sensitivity for use in reliable evaluation of vaccination or more distant infection. Graphical abstractWith the exception of acute infection group, the PITCH ELISpot S1+S2 had greater sensitivity for SARS-CoV-2 specific T cell responses compared with the QuantiFERON SARS-CoV-2 assay tube Ag3. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=64 SRC="FIGDIR/small/22279558v1_ufig1.gif" ALT="Figure 1"> View larger version (13K): org.highwire.dtl.DTLVardef@1913a88org.highwire.dtl.DTLVardef@199b88corg.highwire.dtl.DTLVardef@12309cborg.highwire.dtl.DTLVardef@15807a0_HPS_FORMAT_FIGEXP M_FIG C_FIG

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-471045

ABSTRACT

On the 24th November 2021 the sequence of a new SARS CoV-2 viral isolate spreading rapidly in Southern Africa was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titres of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic as well as Alpha, Beta, Gamma, Delta are substantially reduced or fail to neutralize. Titres against Omicron are boosted by third vaccine doses and are high in cases both vaccinated and infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of a large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses, combining mutations conferring tight binding to ACE2 to unleash evolution driven by immune escape, leading to a large number of mutations in the ACE2 binding site which rebalance receptor affinity to that of early pandemic viruses.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20172668

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019, is a respiratory virus primarily transmitted from person to person through inhalation of droplets or aerosols, laden with viral particles. However, as some studies have shown, virions can remain infectious for up to 72 hours on surfaces, which can lead to transmission through contact. For this reason, a comprehensive study was conducted to determine the efficiency of protocols to recover SARS-CoV-2 from surfaces in built environments. This end-to-end (E2E) study showed that the effective combination of monitoring SARS-CoV-2 on surfaces include using an Isohelix swab as a collection tool, DNA/RNA Shield as a preservative, an automated system for RNA extraction, and reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) as the detection assay. Using this E2E approach, this study showed that, in some cases, SARS-CoV-2 viral standards were still recovered from surfaces as detected by RT-qPCR for as long as eight days even after bleach treatment. Additionally, debris associated with specific built environment surfaces appeared to negatively impact the recovery of RNA, with Amerstat inhibition as high as 90% when challenged with an inactivated viral control. Overall, it was determined that this E2E protocol required a minimum of 1,000 viral particles per 25 cm2 to successfully detect virus from test surfaces. When this method was employed to evaluate 368 samples collected from various built environmental surfaces, all samples tested negative, indicating that the surfaces were either void of virus or below the detection limit of the assay. ImportanceThe ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (the virus responsible for coronavirus disease 2019; COVID-19) pandemic has led to a global slow down with far reaching financial and social impacts. The SARS-CoV-2 respiratory virus is primarily transmitted from person to person through inhalation of infected droplets or aerosols. However, some studies have shown virions can remain infectious on surfaces for days, and can lead to human infection from contact with infected surfaces. Thus, a comprehensive study was conducted to determine the efficiency of protocols to recover SARS-CoV-2 from surfaces in built environments. This end-to-end study showed that the effective combination of monitoring SARS-CoV-2 on surfaces required a minimum of 1,000 viral particles per 25 cm2 to successfully detect virus from surfaces. This comprehensive study can provide valuable information regarding surface monitoring of various materials as well as the capacity to retain viral RNA and allow for effective disinfection.

SELECTION OF CITATIONS
SEARCH DETAIL