Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 54(5): 694-704, 2022 05.
Article in English | MEDLINE | ID: mdl-35484301

ABSTRACT

Rapeseed (Brassica napus L.) is an important oil-producing crop for the world. Its adaptation, yield and quality have been considerably improved in recent decades, but the genomic basis underlying successful breeding selection remains unclear. Hence, we conducted a comprehensive genomic assessment of rapeseed in the breeding process based on the whole-genome resequencing of 418 diverse rapeseed accessions. We unraveled the genomic basis for the selection of adaptation and agronomic traits. Genome-wide association studies identified 628 associated loci-related causative candidate genes for 56 agronomically important traits, including plant architecture and yield traits. Furthermore, we uncovered nonsynonymous mutations in plausible candidate genes for agronomic traits with significant differences in allele frequency distributions across the improvement process, including the ribosome recycling factor (BnRRF) gene for seed weight. This study provides insights into the genomic basis for improving rapeseed varieties and a valuable genomic resource for genome-assisted rapeseed breeding.


Subject(s)
Brassica napus , Brassica rapa , Brassica napus/genetics , Brassica rapa/genetics , Genome, Plant/genetics , Genome-Wide Association Study , Genomics , Plant Breeding , Polymorphism, Single Nucleotide/genetics
2.
Nat Genet ; 53(9): 1392-1402, 2021 09.
Article in English | MEDLINE | ID: mdl-34493868

ABSTRACT

Despite early domestication around 3000 BC, the evolutionary history of the ancient allotetraploid species Brassica juncea (L.) Czern & Coss remains uncertain. Here, we report a chromosome-scale de novo assembly of a yellow-seeded B. juncea genome by integrating long-read and short-read sequencing, optical mapping and Hi-C technologies. Nuclear and organelle phylogenies of 480 accessions worldwide supported that B. juncea is most likely a single origin in West Asia, 8,000-14,000 years ago, via natural interspecific hybridization. Subsequently, new crop types evolved through spontaneous gene mutations and introgressions along three independent routes of eastward expansion. Selective sweeps, genome-wide trait associations and tissue-specific RNA-sequencing analysis shed light on the domestication history of flowering time and seed weight, and on human selection for morphological diversification in this versatile species. Our data provide a comprehensive insight into the origin and domestication and a foundation for genomics-based breeding of B. juncea.


Subject(s)
Biological Evolution , Chromosomes, Plant/genetics , Domestication , Mustard Plant/genetics , Plant Breeding , Genome, Plant/genetics , Hybridization, Genetic/genetics , Quantitative Trait, Heritable
3.
Appl Plant Sci ; 7(8): e11280, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31467803

ABSTRACT

PREMISE: Environmentally controlled facilities, such as growth chambers, are essential tools for experimental research. Automated, low-cost, remote-monitoring hardware can greatly improve both reproducibility and maintenance. METHODS AND RESULTS: Using a Raspberry Pi computer, open-source software, environmental sensors, and a camera, we developed Growth Monitor pi (GMpi), a cost-effective system for monitoring growth chamber conditions. Coupled with our software, GMPi_Pack, our setup automates sensor readings, photography, and alerts when conditions fall out of range. CONCLUSIONS: GMpi offers access to environmental data logging, improving reproducibility of experiments and reinforcing the stability of controlled environmental facilities. The device is also flexible and scalable, allowing researchers the ability to customize and expand GMpi for their own needs.

4.
Am J Bot ; 105(11): 1888-1910, 2018 11.
Article in English | MEDLINE | ID: mdl-30368769

ABSTRACT

PREMISE OF THE STUDY: We present the first plastome phylogeny encompassing all 77 monocot families, estimate branch support, and infer monocot-wide divergence times and rates of species diversification. METHODS: We conducted maximum likelihood analyses of phylogeny and BAMM studies of diversification rates based on 77 plastid genes across 545 monocots and 22 outgroups. We quantified how branch support and ascertainment vary with gene number, branch length, and branch depth. KEY RESULTS: Phylogenomic analyses shift the placement of 16 families in relation to earlier studies based on four plastid genes, add seven families, date the divergence between monocots and eudicots+Ceratophyllum at 136 Mya, successfully place all mycoheterotrophic taxa examined, and support recognizing Taccaceae and Thismiaceae as separate families and Arecales and Dasypogonales as separate orders. Only 45% of interfamilial divergences occurred after the Cretaceous. Net species diversification underwent four large-scale accelerations in PACMAD-BOP Poaceae, Asparagales sister to Doryanthaceae, Orchidoideae-Epidendroideae, and Araceae sister to Lemnoideae, each associated with specific ecological/morphological shifts. Branch ascertainment and support across monocots increase with gene number and branch length, and decrease with relative branch depth. Analysis of entire plastomes in Zingiberales quantifies the importance of non-coding regions in identifying and supporting short, deep branches. CONCLUSIONS: We provide the first resolved, well-supported monocot phylogeny and timeline spanning all families, and quantify the significant contribution of plastome-scale data to resolving short, deep branches. We outline a new functional model for the evolution of monocots and their diagnostic morphological traits from submersed aquatic ancestors, supported by convergent evolution of many of these traits in aquatic Hydatellaceae (Nymphaeales).


Subject(s)
Genetic Speciation , Genome, Plastid , Magnoliopsida/genetics , Phylogeny , DNA, Intergenic , Zingiberales/genetics
5.
Mol Ecol ; 26(13): 3373-3388, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28371014

ABSTRACT

Demographic modelling is often used with population genomic data to infer the relationships and ages among populations. However, relatively few analyses are able to validate these inferences with independent data. Here, we leverage written records that describe distinct Brassica rapa crops to corroborate demographic models of domestication. Brassica rapa crops are renowned for their outstanding morphological diversity, but the relationships and order of domestication remain unclear. We generated genomewide SNPs from 126 accessions collected globally using high-throughput transcriptome data. Analyses of more than 31,000 SNPs across the B. rapa genome revealed evidence for five distinct genetic groups and supported a European-Central Asian origin of B. rapa crops. Our results supported the traditionally recognized South Asian and East Asian B. rapa groups with evidence that pak choi, Chinese cabbage and yellow sarson are likely monophyletic groups. In contrast, the oil-type B. rapa subsp. oleifera and brown sarson were polyphyletic. We also found no evidence to support the contention that rapini is the wild type or the earliest domesticated subspecies of B. rapa. Demographic analyses suggested that B. rapa was introduced to Asia 2,400-4,100 years ago, and that Chinese cabbage originated 1,200-2,100 years ago via admixture of pak choi and European-Central Asian B. rapa. We also inferred significantly different levels of founder effect among the B. rapa subspecies. Written records from antiquity that document these crops are consistent with these inferences. The concordance between our age estimates of domestication events with historical records provides unique support for our demographic inferences.


Subject(s)
Brassica rapa/genetics , Domestication , Plant Breeding , Asia , Documentation , Founder Effect , Polymorphism, Single Nucleotide , Transcriptome
6.
Genome Biol Evol ; 5(11): 2155-73, 2013.
Article in English | MEDLINE | ID: mdl-24171911

ABSTRACT

Plants share a common history of successive whole-genome duplication (WGD) events retaining genomic patterns of duplicate gene copies (ohnologs) organized in conserved syntenic blocks. Duplication was often proposed to affect the origin of novel traits during evolution. However, genetic evidence linking WGD to pathway diversification is scarce. We show that WGD and tandem duplication (TD) accelerated genetic versatility of plant secondary metabolism, exemplified with the glucosinolate (GS) pathway in the mustard family. GS biosynthesis is a well-studied trait, employing at least 52 biosynthetic and regulatory genes in the model plant Arabidopsis. In a phylogenomics approach, we identified 67 GS loci in Aethionema arabicum of the tribe Aethionemae, sister group to all mustard family members. All but one of the Arabidopsis GS gene families evolved orthologs in Aethionema and all but one of the orthologous sequence pairs exhibit synteny. The 45% fraction of duplicates among all protein-coding genes in Arabidopsis was increased to 95% and 97% for Arabidopsis and Aethionema GS pathway inventory, respectively. Compared with the 22% average for all protein-coding genes in Arabidopsis, 52% and 56% of Aethionema and Arabidopsis GS loci align to ohnolog copies dating back to the last common WGD event. Although 15% of all Arabidopsis genes are organized in tandem arrays, 45% and 48% of GS loci in Arabidopsis and Aethionema descend from TD, respectively. We describe a sequential combination of TD and WGD events driving gene family extension, thereby expanding the evolutionary playground for functional diversification and thus potential novelty and success.


Subject(s)
Evolution, Molecular , Genome, Plant , Glucosinolates/biosynthesis , Mustard Plant/genetics , Tandem Repeat Sequences , Arabidopsis/genetics , Genomic Structural Variation , Glucosinolates/genetics , Sequence Homology , Synteny
7.
New Phytol ; 186(1): 18-28, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20002315

ABSTRACT

Polyploidization and recombination are two important processes driving evolution through the building and reshaping of genomes. Allopolyploids arise from hybridization and chromosome doubling among distinct, yet related species. Polyploids may display novel variation relative to their progenitors, and the sources of this variation lie not only in the acquisition of extra gene dosages, but also in the genomic changes that occur after divergent genomes unite. Genomic changes (deletions, duplications, and translocations) have been detected in both recently formed natural polyploids and resynthesized polyploids. In resynthesized Brassica napus allopolyploids, there is evidence that many genetic changes are the consequence of homoeologous recombination. Homoeologous recombination can generate novel gene combinations and phenotypes, but may also destabilize the karyotype and lead to aberrant meiotic behavior and reduced fertility. Thus, natural selection plays a role in the establishment and maintenance of fertile natural allopolyploids that have stabilized chromosome inheritance and a few advantageous chromosomal rearrangements. We discuss the evidence for genome rearrangements that result from homoeologous recombination in resynthesized B. napus and how these observations may inform phenomena such as chromosome replacement, aneuploidy, non-reciprocal translocations and gene conversion seen in other polyploids.


Subject(s)
Brassica napus/genetics , Models, Genetic , Polyploidy , Recombination, Genetic/genetics , Chromosome Pairing/genetics , Chromosome Segregation/genetics
8.
Biol J Linn Soc Lond ; 82(4): 689-700, 2004 Aug.
Article in English | MEDLINE | ID: mdl-18079994

ABSTRACT

Arabidopsis is a model system not only for studying numerous aspects of plant biology, but also for understanding mechanisms of the rapid evolutionary process associated with genome duplication and polyploidization. Although in animals interspecific hybrids are often sterile and aneuploids are related to disease syndromes, both Arabidopsis autopolyploids and allopolyploids occur in nature and can be readily formed in the laboratory, providing an attractive system for comparing changes in gene expression and genome structure among relatively 'young' and 'established' or 'ancient' polyploids. Powerful reverse and forward genetics in Arabidopsis offer an exceptional means by which regulatory mechanisms of gene and genome duplication may be revealed. Moreover, the Arabidopsis genome is completely sequenced; both coding and non-coding sequences are available. We have developed spotted oligo-gene and chromosome microarrays using the complete Arabidopsis genome sequence. The oligo-gene microarray consists of ~26 000 70-mer oligonucleotides that are designed from all annotated genes in Arabidopsis, and the chromosome microarray contains 1 kb genomic tiling fragments amplified from a chromosomal region or the complete sequence of chromosome 4. We have demonstrated the utility of microarrays for genome-wide analysis of changes in gene expression, genome organization and chromatin structure in Arabidopsis polyploids and related species.

SELECTION OF CITATIONS
SEARCH DETAIL
...