Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(18): 20605-20612, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32286048

ABSTRACT

The impact of liquid electrolyte soaking on the interfacial resistance between the garnet-structured Li7La3Zr2O12 (LLZO) solid electrolyte and metallic lithium has been studied. Lithium carbonate (Li2CO3) formed by inadvertent exposure of LLZO to ambient conditions is generally known to increase interfacial impedance and decrease lithium wettability. Soaking LLZO powders and pellets in the electrolyte containing lithium tetrafluoroborate (LiBF4) shows a significantly reduced interfacial resistance and improved contact between lithium and LLZO. Raman spectroscopy, X-ray diffraction, and soft X-ray absorption spectroscopy reveal how Li2CO3 is continuously removed with increasing soaking time. On-line mass spectrometry and free energy calculations show how LiBF4 reacts with surface carbonate to form carbon dioxide. Using a very simple and scalable process that does not involve heat-treatment and expensive coating techniques, we show that the Li-LLZO interfacial resistance can be reduced by an order of magnitude.

2.
J Phys Condens Matter ; 30(45): 455702, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30207297

ABSTRACT

We derive expressions for the dynamical matrix of a crystalline solid with total potential energy described by an embedded-atom-method (EAM) potential. We make no assumptions regarding the number of atoms per unit cell. These equations can be used for calculating both bulk phonon modes as well the modes of a slab of material, which is useful for the study of surface phonons. We further discuss simplifications that occur in cubic lattices with one atom per unit cell. The relationship of Born-von-Kármán (BvK) force constants-which are readily extracted from experimental vibrational dispersion curves-to the EAM potential energy is discussed. In particular, we derive equations for BvK force constants for bcc and fcc lattices in terms of the functions that define an EAM model. The EAM-BvK relationship is useful for assessing the suitability of a particular EAM potential for describing vibrational spectra, which we illustrate using vibrational data from the bcc metals K and Fe and the fcc metal Au.

3.
Sci Adv ; 4(7): eaat5168, 2018 07.
Article in English | MEDLINE | ID: mdl-30062125

ABSTRACT

Lithium metal has long been considered one of the most promising anode materials for advanced lithium batteries (for example, Li-S and Li-O2), which could offer significantly improved energy density compared to state-of-the-art lithium ion batteries. Despite decades of intense research efforts, its commercialization remains limited by poor cyclability and safety concerns of lithium metal anodes. One root cause is the parasitic reaction between metallic lithium and the organic liquid electrolyte, resulting in continuous formation of an unstable solid electrolyte interphase, which consumes both active lithium and electrolyte. Until now, it has been challenging to completely shut down the parasitic reaction. We find that a thin-layer coating applied through atomic layer deposition on a hollow carbon host guides lithium deposition inside the hollow carbon sphere and simultaneously prevents electrolyte infiltration by sealing pinholes on the shell of the hollow carbon sphere. By encapsulating lithium inside the stable host, parasitic reactions are prevented, resulting in impressive cycling behavior. We report more than 500 cycles at a high coulombic efficiency of 99% in an ether-based electrolyte at a cycling rate of 0.5 mA/cm2 and a cycling capacity of 1 mAh/cm2, which is among the most stable Li anodes reported so far.

4.
Sci Adv ; 3(11): eaao3170, 2017 11.
Article in English | MEDLINE | ID: mdl-29202031

ABSTRACT

Defects are important features in two-dimensional (2D) materials that have a strong influence on their chemical and physical properties. Through the enhanced chemical reactivity at defect sites (point defects, line defects, etc.), one can selectively functionalize 2D materials via chemical reactions and thereby tune their physical properties. We demonstrate the selective atomic layer deposition of LiF on defect sites of h-BN prepared by chemical vapor deposition. The LiF deposits primarily on the line and point defects of h-BN, thereby creating seams that hold the h-BN crystallites together. The chemically and mechanically stable hybrid LiF/h-BN film successfully suppresses lithium dendrite formation during both the initial electrochemical deposition onto a copper foil and the subsequent cycling. The protected lithium electrodes exhibit good cycling behavior with more than 300 cycles at relatively high coulombic efficiency (>95%) in an additive-free carbonate electrolyte.

SELECTION OF CITATIONS
SEARCH DETAIL
...