Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Chem Mater ; 36(6): 2756-2766, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38558915

ABSTRACT

Water is one of the most reactive and abundant molecules on Earth, and it is thus crucial to understand its reactivity with various material families. One of the big unknown questions is how water in liquid and vapor forms impact the fast-emerging class of metal-organic frameworks (MOFs). Here, we discover that high-pressure water vapor drastically modifies the structure and hence the dynamic, thermodynamic, and mechanical properties of MOF glasses. In detail, we find that an archetypical MOF (ZIF-62) is extremely sensitive to heat treatments performed at 460 °C and water vapor pressures up to ∼110 bar. Both the melting and glass transition temperatures decrease remarkably (by >100 °C), and simultaneously, hardness and Young's modulus increase by up to 100% under very mild treatment conditions (<20 bar of hydrothermal pressure). Structural analyses suggest water to partially coordinate to Zn in the form of a hydroxide ion by replacing a bridging imidazolate-based linker. The work provides insight into the role of hot-compressed water in influencing the structure and properties of MOF glasses and opens a new route for systematically changing the thermodynamics and kinetics of MOF liquids and thus altering the thermal and mechanical properties of the resulting MOF glasses.

2.
Adv Mater ; : e2311599, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38374796

ABSTRACT

Vertically stacked multiple atomically thin layers have recently widened the landscape of rich optical structures thanks to these quantum metamaterials or van der Waals (vdW) materials, featuring hyperbolic polaritons with unprecedented avenues for light. Despite their far-reaching implications, most of their properties rest entirely on a trivial band topological origin. Here, a 2D approach is adopted toward a micromechanical vdW analogue that, as a result of engineered chiral and mirror symmetries, provides topologically resilient hyperbolic radiation of mechanical vibrations in the ultrasonic regime. By applying laser vibrometry of the micrometer-sized metasurface, we are able to exhibit the exotic fingerprints of robust hyperbolic radiation spanning several frequencies, which beyond their physical relevance, may enable ultrasonic technologies.

3.
Nat Commun ; 14(1): 7633, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993444

ABSTRACT

Self-imaging phenomena for nonperiodic waves along a parabolic trajectory encompass both the Talbot effect and the accelerating Airy beams. Beyond the ability to guide waves along a bent trajectory, the self-imaging component offers invaluable advantages to lensless imaging comprising periodic repetition of planar field distributions. In order to circumvent thermoviscous and diffraction effects, we structure subwavelength resonators in an acoustically impenetrable surface supporting spoof surface acoustic waves (SSAWs) to provide highly confined Airy-Talbot effect, extending Talbot distances along the propagation path and compressing subwavelength lobes in the perpendicular direction. From a linear array of loudspeakers, we judiciously control the amplitude and phase of the SSAWs above the structured surface and quantitatively evaluate the self-healing performance of the Airy-Talbot effect by demonstrating how the distinctive scattering patterns remain largely unaffected against superwavelength obstacles. Furthermore, we introduce a new mechanism utilizing subwavelength Airy beam as a coding/decoding degree of freedom for acoustic communication with high information density comprising robust transport of encoded signals.

4.
Phys Rev Lett ; 131(6): 066601, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37625050

ABSTRACT

The Su-Schrieffer-Heeger (SSH) model is an important cornerstone in modern condensed-matter topology, yet it is the simplest one-dimensional (1D) tight binding approach to dwell into the characteristics of spinless electrons in chains of staggered bonds. Moreover, the chiral symmetry assures that its surface-confining states pin to zero energy, i.e., they reside midgap in the energy dispersion. Symmetry is also an attribute related to artificial media that are subject to parity P and time-reversal T operations. This non-Hermitian family has been thoroughly nourished in a wave-based context, where anti-PT (APT) symmetric systems are the youngest belonging members, permitting refractionless optics, inverse PT-symmetry breaking transition, and asymmetric mode switching. Here, we report the first extension of APT symmetry in an acoustic setting by endowing a SSH lattice with gain and loss components. We show that the in-gap topological defect state hinges on the non-Hermitian phase, in that the broken symmetry suppresses it, yet when PT or APT symmetry is intact, it is observed with either damped or evanescent decay, respectively. Our experiments showcase how the non-Hermitian SSH lattice serves as a utile platform to investigate topological properties across various PT symmetric phases using sound.

6.
Nature ; 618(7966): 687-697, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37344649

ABSTRACT

Light and sound are the most ubiquitous forms of waves, associated with a variety of phenomena and physical effects such as rainbows and echoes. Light and sound, both categorized as classical waves, have lately been brought into unexpected connections with exotic topological phases of matter. We are currently witnessing the onset of a second wave of active research into this topic. The past decade has been marked by fundamental advances comprising two-dimensional quantum Hall insulators and quantum spin and valley Hall insulators, whose topological properties are characterized using linear band topology. Here, going beyond these conventional topological systems, we focus on the latest frontiers, including non-Hermitian, nonlinear and non-Abelian topology as well as topological defects, for which the characterization of the topological features goes beyond the standard band-topology language. In addition to an overview of the current state of the art, we also survey future research directions for valuable applications.

7.
Nat Commun ; 13(1): 5096, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36042207

ABSTRACT

A single-wall carbon nanotube can be viewed as a one-dimensional material created by rolling up a sheet of graphene. Its electronic band structure depends on the chirality, i.e., how the sheet has been rolled up, yet synthesizing the symmetry at will is rather challenging. We structure an artificial honeycomb lattice in both a zigzag and an armchair tube and explore their topological features for sound. Our findings reveal how armchair tubes remain gapless, whereas the zigzag counterparts host nontrivial edge states of non-zero quantized Zak phase, which are dictated by the circumferential number of units. Unlike man-made planar lattices whose underling symmetry must be broken to harvest quantum Hall and pseudospin phases, interestingly, the structured tubular lattice symmetry remains intact, while its nontrivial phase alone is governed by the chirality and the tube diameter. We foresee that our results, not only for sound, but also in photonics, mechanics and electronics will broaden future avenues for fundamental and applied sciences.

8.
Adv Mater ; 34(29): e2202026, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35661432

ABSTRACT

Multiplexing technology with increased information capacity plays a crucial role in the realm of acoustic communication. Different quantities of sound waves, including time, frequency, amplitude, phase, and orbital angular momentum (OAM), have been independently introduced as the physical multiplexing approach to allow for enhanced communication densities. An acoustic metasurface is decorated with carbon nanotube patches, which when electrically pumped and set to rotate, functions as a hybrid mode-frequency-division multiplexer with synthetic dimensions. Based on this spatiotemporal modulation, a superposition of vortex beams with orthogonal OAMs and symmetric harmonics are both numerically and experimentally demonstrated. Also, flexible combinations of OAM modes with diverse frequency shifts are obtained by transforming the azimuthal phase distributions, which inspires a mode-frequency-division multiplexing approach that significantly promotes the communication capacity.

9.
Adv Mater ; 34(28): e2201575, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35526115

ABSTRACT

An ultrasonic motor built with a contactless meta engine block (MEB) is designed and experimentally demonstrated for twisting the linear momentum of sound emanating from a Helmholtz resonator-based metasurface into orbital angular momentum (OAM). The MEB is capable of hosting highly efficient excitations of eigenmodes carrying desired OAM whose Bessel acoustic intensity patterns are enhanced by over ten times compared to the incident wave. Thanks to this efficiency, bidirectional ultrasonic OAM is capable of driving loads at speeds up to 1000 rpm at 4 W and remarkable sound radiation torque levels. Moreover, the possibility of using arbitrarily shaped MEBs is also demonstrated by engineering its physical boundary condition based on an analytically derived criterion to guarantee the high twisting efficiency of man-made OAM. The results show how noninvasive driving of an ultrasonic motor can be made possible through appropriately designed momentum twisting, which opens the door to a new class of integrated mechanical devices solely powered by sound.

10.
Phys Rev Lett ; 127(15): 156401, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34678007

ABSTRACT

Dirac cones are essential features of the electronic band structure of materials like graphene and topological insulators (TIs). Lately, this avenue has found a growing interest in classical wave physics by using engineered artificial lattices. Here, we demonstrate an acoustic 3D honeycomb lattice that features a Dirac hierarchy comprising an eightfold bulk Dirac cone, a 2D fourfold surface state Dirac cone, and a 1D twofold hinge state Dirac cone. The lifting of the Dirac degeneracy in each hierarchy authorizes the 3D lattice to appear as a first-order TI with 2D topological surface states, a second-order TI exhibiting 1D hinge states, and a third-order TI of 0D midgap corner states. Analytically we discuss the topological origin of the surface, hinge, and corner states, which are all characterized by out-of-plane and in-plane winding numbers. Our study offers new routes to control sound and vibration for acoustic steering and guiding, on-chip ultrasonic energy concentration, and filtering to name a few.

11.
Nature ; 597(7878): 655-659, 2021 09.
Article in English | MEDLINE | ID: mdl-34588672

ABSTRACT

In 1878, Lord Rayleigh observed the highly celebrated phenomenon of sound waves that creep around the curved gallery of St Paul's Cathedral in London1,2. These whispering-gallery waves scatter efficiently with little diffraction around an enclosure and have since found applications in ultrasonic fatigue and crack testing, and in the optical sensing of nanoparticles or molecules using silica microscale toroids. Recently, intense research efforts have focused on exploring non-Hermitian systems with cleverly matched gain and loss, facilitating unidirectional invisibility and exotic characteristics of exceptional points3,4. Likewise, the surge in physics using topological insulators comprising non-trivial symmetry-protected phases has laid the groundwork in reshaping highly unconventional avenues for robust and reflection-free guiding and steering of both sound and light5,6. Here we construct a topological gallery insulator using sonic crystals made of thermoplastic rods that are decorated with carbon nanotube films, which act as a sonic gain medium by virtue of electro-thermoacoustic coupling. By engineering specific non-Hermiticity textures to the activated rods, we are able to break the chiral symmetry of the whispering-gallery modes, which enables the out-coupling of topological 'audio lasing' modes with the desired handedness. We foresee that these findings will stimulate progress in non-destructive testing and acoustic sensing.

12.
Phys Rev Lett ; 127(8): 084301, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34477409

ABSTRACT

In this Letter, we theoretically propose and experimentally demonstrate a three-dimensional soundproof acoustic cage structure, hereby denoted as an acoustic metacage. The metacage is composed of six acoustic metamaterial slabs with open holes and hidden bypass space coiling tunnels connected to the holes. Band structure analysis reveals a novel physical mechanism to open a low-frequency broad partial band gap via the band folding in other directions, which can also be interpreted by an effective medium with indefinite effective mass density and negative effective modulus. Transmission loss in simulations and in the acoustic impedance tube are administered. Strikingly, we prove that the soundproofing effect of the metacage is robust against the airflow perturbation induced by a fan. Our work paves a road for low-frequency airborne soundproof structures in the presence of ventilation.

13.
Nat Commun ; 12(1): 3670, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34135332

ABSTRACT

Transceiving ultra-weak sound typically relies on signal pre-amplification at the transmitting end via active electro-acoustic devices, which inherently perturbs the environment in the form of noise that inevitably leads to information leakage. Here we demonstrate a passive remote-whispering metamaterial (RWM) enabling weak airborne sound at audible frequencies to reach unprecedented signal enhancement without altering the detected ambient soundscape, which is based on the extraordinary scattering properties of a metamaterial formed by a pair of self-resonating subwavelength Mie meta-cavities, constituting the acoustic analogy of Förster resonance energy transfer. We demonstrate efficient non-radiative sound transfer over distances hundreds times longer than the radius of the meta-cavities, which enables the RWM to recover weak sound signals completely overwhelmed by strong noise with enhanced signal-to-noise ratio from -3 dB below the detection limit of 0 dB in free space to 17.7 dB.

14.
ACS Appl Mater Interfaces ; 13(15): 17753-17765, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33822572

ABSTRACT

Humans primarily interact with information technology through glass touch screens, and the world would indeed be unrecognizable without glass. However, the low toughness of oxide glasses continues to be their Achilles heel, limiting both future applications and the possibility to make thinner, more environmentally friendly glasses. Here, we show that with proper control of plasticity mechanisms, record-high values of fracture toughness for transparent bulk oxide glasses can be achieved. Through proper combination of gas-mediated permanent densification and rational composition design, we increase the glasses' propensity for plastic deformation. Specifically, we demonstrate a fracture toughness of an aluminoborate glass (1.4 MPa m0.5) that is twice as high as that of commercial glasses for mobile devices. Atomistic simulations reveal that the densification of the adaptive aluminoborate network increases coordination number changes and bond swapping, ultimately enhancing plasticity and toughness upon fracture. Our findings thus provide general insights into the intrinsic toughening mechanisms of oxide glasses.

15.
Nat Nanotechnol ; 16(5): 487-489, 2021 05.
Article in English | MEDLINE | ID: mdl-33875871
16.
Phys Rev Lett ; 125(21): 214301, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33275023

ABSTRACT

Twisted bilayer graphene develops quasiflat bands at specific "magic" interlayer rotation angles through an unconventional mechanism connected to carrier chirality. Quasiflat bands are responsible for a wealth of exotic, correlated-electron phases in the system. In this Letter, we propose a mechanical analog of twisted bilayer graphene made of two vibrating plates patterned with a honeycomb mesh of masses and coupled across a continuum elastic medium. We show that flexural waves in the device exhibit vanishing group velocity and quasiflat bands at magic angles in close correspondence with electrons in graphene models. The strong similarities of spectral structure and spatial eigenmodes in the two systems demonstrate the chiral nature of the mechanical flat bands. We derive analytical expressions that quantitatively connect the mechanical and electronic models, which allow us to predict the parameters required for an experimental realization of our proposal.

17.
Phys Rev Lett ; 125(20): 206402, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33258615

ABSTRACT

The bulk-boundary or bulk-edge correspondence is a principle relating surface confined states to the topological classification of the bulk. By marrying non-Hermitian ingredients in terms of gain or loss with media that violate reciprocity, an unconventional non-Bloch bulk-boundary correspondence leads to unusual localization of bulk states at boundaries-a phenomenon coined non-Hermitian skin effect. Here, we numerically employ the acoustoelectric effect in electrically biased and layered piezophononic media as a solid framework for non-Hermitian and nonreciprocal topological mechanics in the MHz regime. Thanks to a non-Hermitian skin effect for mechanical vibrations, we find that the bulk bands of finite systems are highly sensitive to the type of crystal termination, which indicates a failure of using traditional Bloch bands to predict the wave characteristics. More surprisingly, when reversing the electrical bias, we unveil how topological edge and bulk vibrations can be harnessed either at the same or opposite interfaces. Yet, while bulk states are found to display this unconventional skin effect, we further discuss how in-gap edge states in the same instant, counterintuitively are able to delocalize along the entire layered medium. We foresee that our predictions will stimulate new avenues in echo-less ultrasonics based on exotic wave physics.

18.
Adv Mater ; 31(51): e1904386, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31682285

ABSTRACT

The discovery of topologically nontrivial electronic systems has opened a new age in condensed matter research. From topological insulators to topological superconductors and Weyl semimetals, it is now understood that some of the most remarkable and robust phases in electronic systems (e.g., quantum Hall or anomalous quantum Hall) are the result of topological protection. These powerful ideas have recently begun to be explored also in bosonic systems. Topologically protected acoustic, mechanical, and optical edge states have been demonstrated in a number of systems that recreate the requisite topological conditions. Such states that propagate without backscattering could find important applications in communications and energy technologies. Here, a topologically bound mechanical state, a different class of nonpropagating protected state that cannot be destroyed by local perturbations, is demonstrated. It is in particular a mechanical analogue of the well-known Majorana bound states (MBSs) of electronic topological superconductor systems. The topological binding is implemented by creating a Kekulé distortion vortex on a 2D mechanical honeycomb superlattice that can be mapped to a magnetic flux vortex in a topological superconductor.

19.
Phys Rev Lett ; 123(19): 196601, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31765190

ABSTRACT

Topological phases have recently been realized in bosonic systems. The associated boundary modes between regions of distinct topology have been used to demonstrate robust waveguiding, protected from defects by the topology of the surrounding bulk. A related type of topologically protected state that is not propagating but is bound to a defect has not been demonstrated to date in a bosonic setting. Here we demonstrate numerically and experimentally that an acoustic mode can be topologically bound to a vortex fabricated in a two-dimensional, Kekulé-distorted triangular acoustic lattice. Such lattice realizes an acoustic analog of the Jackiw-Rossi mechanism that topologically binds a bound state in a p-wave superconductor vortex. The acoustic bound state is thus a bosonic analog of a Majorana bound state, where the two valleys replace particle and hole components. We numerically show that it is topologically protected against arbitrary symmetry-preserving local perturbations, and remains pinned to the Dirac frequency of the unperturbed lattice regardless of parameter variations. We demonstrate our prediction experimentally by 3D printing the vortex pattern in a plastic matrix and measuring the spectrum of the acoustic response of the device. Despite viscothermal losses, the measured topological resonance remains robust, with its frequency closely matching our simulations.

20.
Adv Mater ; 31(49): e1904682, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31650654

ABSTRACT

Higher-order topological insulators (HOTIs) belong to a new class of materials with unusual topological phases. They have garnered considerable attention due to their capabilities in confining energy at the hinges and corners, which is entirely protected by the topology, and have thus become attractive structures for acoustic wave studies and control. However, for most practical applications at audible and low frequencies, compact and subwavelength implementations are desirable in addition to providing robust guiding of sound beyond a single-frequency operation. Here, a holey HOTI capable of sustaining deeply confined corner states 50 times smaller than the wavelength is proposed. A remarkable resilience of these surface-confined acoustic states against defects is experimentally observed, and topologically protected sound is demonstrated in three different frequency regimes. Concerning this matter, the findings will thus have the capability to push forward exciting applications for robust acoustic imaging way beyond the diffraction limit.

SELECTION OF CITATIONS
SEARCH DETAIL
...