Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848040

ABSTRACT

PURPOSE: Somatic missense mutations in the phosphodegron domain of the MYC gene (MYC Box I or MBI) are detected in the dominant clones of a subset of acute myeloid leukemia (AML) patients, but the mechanisms by which they contribute to AML are unknown. EXPERIMENTAL DESIGN: To investigate the effects of MBI MYC mutations on hematopoietic cells, we employed a multi-omic approach to systematically compare the cellular and molecular consequences of expressing oncogenic doses of wild type, threonine-58 and proline-59 mutant MYC proteins in hematopoietic cells, and we developed a knockin mouse harboring the germline MBI mutation p.T58N in the Myc< gene. RESULTS: Both wild type and MBI mutant MYC proteins promote self-renewal programs and expand highly selected subpopulations of progenitor cells in the bone marrow. Compared to their wild type counterparts, mutant cells display decreased cell death and accelerated leukemogenesis in vivo, changes that are recapitulated in the transcriptomes of human AML bearing MYC mutations. The mutant phenotypes feature decreased stability and translation of mRNAs encoding proapoptotic and immune-regulatory genes, increased translation of RNA binding proteins and nuclear export machinery, and distinct nucleocytoplasmic RNAs profiles. MBI MYC mutant proteins also show a higher propensity to aggregate in perinuclear regions and the cytoplasm. Like the overexpression model, heterozygous p.T58N knockin mice displayed similar changes in subcellular MYC localization, progenitor expansion, transcriptional signatures, and develop hematopoietic tumors. CONCLUSIONS: This study uncovers that MBI MYC mutations alter RNA nucleocytoplasmic transport mechanisms to contribute to the development of hematopoietic malignancies.

2.
bioRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37215042

ABSTRACT

Thioredoxin Reductase (TrxR) is a key enzyme in hydroperoxide detoxification through peroxiredoxin enzymes and in thiol-mediated redox regulation of cell signaling. Because cancer cells produce increased steady-state levels of reactive oxygen species (ROS; i.e., superoxide and hydrogen peroxide), TrxR is currently being targeted in clinical trials using the anti-rheumatic drug, auranofin (AF). AF treatment decreased TrxR activity and clonogenic survival in small cell lung cancer (SCLC) cell lines (DMS273 and DMS53) as well as the lung atypical (neuroendocrine tumor) NET cell line H727. AF treatment also significantly sensitized DMS273 and H727 cell lines in vitro to sorafenib, a multi-kinase inhibitor that was shown to decrease intracellular glutathione. The pharmacokinetic and pharmacodynamic properties of AF treatment in a mouse SCLC xenograft model was examined to maximize inhibition of TrxR activity without causing toxicity. AF was administered intraperitoneally at 2 mg/kg or 4 mg/kg (IP) once (QD) or twice daily (BID) for 1 to 5 days in mice with DMS273 xenografts. Plasma levels of AF were 10-20 µM (determined by mass spectrometry of gold) and the optimal inhibition of TrxR (50 %) was obtained at 4 mg/kg once daily, with no effect on glutathione peroxidase 1 activity. When this daily AF treatment was extended for 14 days a significant prolongation of median survival from 19 to 23 days (p=0.04, N=30 controls, 28 AF) was observed without causing changes in animal bodyweight, CBCs, bone marrow toxicity, blood urea nitrogen, or creatinine. These results show that AF is an effective inhibitor of TrxR both in vitro and in vivo in SCLC, capable of sensitizing NETs and SCLC to sorafenib, and supports the hypothesis that AF could be used as an adjuvant therapy with agents known to induce disruptions in thiol metabolism to enhance therapeutic efficacy.

3.
bioRxiv ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37961226

ABSTRACT

Somatic missense mutations in the phosphodegron domain of the MYC gene ( M YC Box I) are detected in the dominant clones of a subset of acute myeloid leukemia (AML) patients, but the mechanisms by which they contribute to AML are unknown. To unveil unique proprieties of MBI MYC mutant proteins, we systematically compared the cellular and molecular consequences of expressing similar oncogenic levels of wild type and MBI mutant MYC. We found that MBI MYC mutants can accelerate leukemia by driving unique transcriptional signatures in highly selected, myeloid progenitor subpopulations. Although these mutations increase MYC stability, they overall dampen MYC chromatin localization and lead to a cytoplasmic accumulation of the mutant proteins. This phenotype is coupled with increased translation of RNA binding proteins and nuclear export machinery, which results in altered RNA partitioning and accelerated decay of select transcripts encoding proapoptotic and proinflammatory genes. Heterozygous knockin mice harboring the germline MBI mutation Myc p.T73N exhibit cytoplasmic MYC localization, myeloid progenitors' expansion with similar transcriptional signatures to the overexpression model, and eventually develop hematological malignancies. This study uncovers that MBI MYC mutations alter MYC localization and disrupt mRNA subcellular distribution and turnover of select transcripts to accelerate tumor initiation and growth.

4.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: mdl-34845035

ABSTRACT

Acute myeloid leukemia (AML) patients rarely have long first remissions (LFRs; >5 y) after standard-of-care chemotherapy, unless classified as favorable risk at presentation. Identification of the mechanisms responsible for long vs. more typical, standard remissions may help to define prognostic determinants for chemotherapy responses. Using exome sequencing, RNA-sequencing, and functional immunologic studies, we characterized 28 normal karyotype (NK)-AML patients with >5 y first remissions after chemotherapy (LFRs) and compared them to a well-matched group of 31 NK-AML patients who relapsed within 2 y (standard first remissions [SFRs]). Our combined analyses indicated that genetic-risk profiling at presentation (as defined by European LeukemiaNet [ELN] 2017 criteria) was not sufficient to explain the outcomes of many SFR cases. Single-cell RNA-sequencing studies of 15 AML samples showed that SFR AML cells differentially expressed many genes associated with immune suppression. The bone marrow of SFR cases had significantly fewer CD4+ Th1 cells; these T cells expressed an exhaustion signature and were resistant to activation by T cell receptor stimulation in the presence of autologous AML cells. T cell activation could be restored by removing the AML cells or blocking the inhibitory major histocompatibility complex class II receptor, LAG3. Most LFR cases did not display these features, suggesting that their AML cells were not as immunosuppressive. These findings were confirmed and extended in an independent set of 50 AML cases representing all ELN 2017 risk groups. AML cell-mediated suppression of CD4+ T cell activation at presentation is strongly associated with unfavorable outcomes in AML patients treated with standard chemotherapy.


Subject(s)
Immune Tolerance/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Adult , CD4-Positive T-Lymphocytes/immunology , Female , Humans , Immune Tolerance/immunology , Karyotype , Leukemia, Myeloid, Acute/therapy , Male , Middle Aged , Prognosis , Recurrence , Remission Induction , Risk Factors , Sequence Analysis, RNA/methods , Th1 Cells/immunology , Transcriptome/genetics , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...