Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Am Heart Assoc ; 13(8): e033628, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38563382

ABSTRACT

BACKGROUND: The ketone body 3-hydroxybutyrate (3-OHB) increases cardiac output (CO) by 35% to 40% in healthy people and people with heart failure. The mechanisms underlying the effects of 3-OHB on myocardial contractility and loading conditions as well as the cardiovascular effects of its enantiomeric forms, D-3-OHB and L-3-OHB, remain undetermined. METHODS AND RESULTS: Three groups of 8 pigs each underwent a randomized, crossover study. The groups received 3-hour infusions of either D/L-3-OHB (racemic mixture), 100% L-3-OHB, 100% D-3-OHB, versus an isovolumic control. The animals were monitored with pulmonary artery catheter, left ventricle pressure-volume catheter, and arterial and coronary sinus blood samples. Myocardial biopsies were evaluated with high-resolution respirometry, coronary arteries with isometric myography, and myocardial kinetics with D-[11C]3-OHB and L-[11C]3-OHB positron emission tomography. All three 3-OHB infusions increased 3-OHB levels (P<0.001). D/L-3-OHB and L-3-OHB increased CO by 2.7 L/min (P<0.003). D-3-OHB increased CO nonsignificantly (P=0.2). Circulating 3-OHB levels correlated with CO for both enantiomers (P<0.001). The CO increase was mediated through arterial elastance (afterload) reduction, whereas contractility and preload were unchanged. Ex vivo, D- and L-3-OHB dilated coronary arteries equally. The mitochondrial respiratory capacity remained unaffected. The myocardial 3-OHB extraction increased only during the D- and D/L-3-OHB infusions. D-[11C]3-OHB showed rapid cardiac uptake and metabolism, whereas L-[11C]3-OHB demonstrated much slower pharmacokinetics. CONCLUSIONS: 3-OHB increased CO by reducing afterload. L-3-OHB exerted a stronger hemodynamic response than D-3-OHB due to higher circulating 3-OHB levels. There was a dissocitation between the myocardial metabolism and hemodynamic effects of the enantiomers, highlighting L-3-OHB as a potent cardiovascular agent with strong hemodynamic effects.


Subject(s)
Hydroxybutyrates , Tomography, X-Ray Computed , Humans , Swine , Animals , 3-Hydroxybutyric Acid/pharmacology , Cross-Over Studies , Hydroxybutyrates/pharmacology , Heart , Ketone Bodies/metabolism
2.
Circulation ; 149(19): 1474-1489, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38533643

ABSTRACT

BACKGROUND: Heart failure triggers a shift in myocardial metabolic substrate utilization, favoring the ketone body 3-hydroxybutyrate as energy source. We hypothesized that 14-day treatment with ketone ester (KE) would improve resting and exercise hemodynamics and exercise capacity in patients with heart failure with reduced ejection fraction. METHODS: In a randomized, double-blind cross-over study, nondiabetic patients with heart failure with reduced ejection fraction received 14-day KE and 14-day isocaloric non-KE comparator regimens of 4 daily doses separated by a 14-day washout period. After each treatment period, participants underwent right heart catheterization, echocardiography, and blood sampling at plasma trough levels and after dosing. Participants underwent an exercise hemodynamic assessment after a second dosing. The primary end point was resting cardiac output (CO). Secondary end points included resting and exercise pulmonary capillary wedge pressure and peak exercise CO and metabolic equivalents. RESULTS: We included 24 patients with heart failure with reduced ejection fraction (17 men; 65±9 years of age; all White). Resting CO at trough levels was higher after KE compared with isocaloric comparator (5.2±1.1 L/min versus 5.0±1.1 L/min; difference, 0.3 L/min [95% CI, 0.1-0.5), and pulmonary capillary wedge pressure was lower (8±3 mm Hg versus 11±3 mm Hg; difference, -2 mm Hg [95% CI, -4 to -1]). These changes were amplified after KE dosing. Across all exercise intensities, KE treatment was associated with lower mean exercise pulmonary capillary wedge pressure (-3 mm Hg [95% CI, -5 to -1] ) and higher mean CO (0.5 L/min [95% CI, 0.1-0.8]), significantly different at low to moderate steady-state exercise but not at peak. Metabolic equivalents remained similar between treatments. In exploratory analyses, KE treatment was associated with 18% lower NT-proBNP (N-terminal pro-B-type natriuretic peptide; difference, -98 ng/L [95% CI, -185 to -23]), higher left ventricular ejection fraction (37±5 versus 34±5%; P=0.01), and lower left atrial and ventricular volumes. CONCLUSIONS: KE treatment for 14 days was associated with higher CO at rest and lower filling pressures, cardiac volumes, and NT-proBNP levels compared with isocaloric comparator. These changes persisted during exercise and were achieved on top of optimal medical therapy. Sustained modulation of circulating ketone bodies is a potential treatment principle in patients with heart failure with reduced ejection fraction. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT05161650.


Subject(s)
Heart Failure , Stroke Volume , Humans , Male , Heart Failure/drug therapy , Heart Failure/physiopathology , Female , Double-Blind Method , Aged , Stroke Volume/drug effects , Middle Aged , Cross-Over Studies , Exercise Tolerance/drug effects , Administration, Oral , Ventricular Function, Left/drug effects , Treatment Outcome , Esters/administration & dosage , Ketones/administration & dosage
3.
ESC Heart Fail ; 11(2): 837-845, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38196294

ABSTRACT

AIMS: In patients with chronic heart failure with reduced ejection fraction (HFrEF), myocardial ketone metabolism is increased and short-term treatment with the ketone body 3-hydroxy butyrate (3-OHB) has beneficial haemodynamic effects. In patients with HFrEF, we investigated whether the level of circulating 3-OHB predicted all-cause mortality and sought to identify correlations between patient characteristics and circulating 3-OHB levels. METHODS AND RESULTS: We conducted a cohort study in 218 patients with HFrEF. Plasma 3-OHB levels were measured using high-performance liquid chromatography tandem mass spectrometry. Data on all-cause mortality were obtained by reviewing the patients' medical records, which are linked to the national 'Central Person Registry' that registers the timing of all deaths in the country. Mean left ventricular ejection fraction was 35 ± 8.6%, mean age was 67 ± 10 years, 54% were New York Heart Association II, and 27% had type 2 diabetes mellitus. Median follow-up time was 7.3 (interquartile range 6.3-8.4) years. We observed large variations in 3-OHB levels between patients (median 59 µM, range: 14-694 µM). Patients with 3-OHB levels above the median displayed a markedly increased risk of death compared with those with low levels {hazard ratio [HR]: 2.1 [95% confidence interval (CI): 1.3-3.5], P = 0.003}. In a multivariate analysis, 3-OHB predicted mortality independently of known chronic heart failure risk factors [HR: 1.004 (95% CI: 1.001-1.007), P = 0.02] and with a similar statistical strength as N-terminal pro-brain natriuretic peptide (NT-proBNP) [HR: 1.0005 (95% CI: 1.000-1.001), P = 0.02]. For every 100 µmol increase in plasma 3-OHB, the hazard of death increased by 49%. The following factors significantly predicted 3-OHB levels in the univariate analysis: free fatty acids (FFAs) [ß: 238 (95% CI: 185-292), P < 0.0001], age [ß: 2.43 (95% CI: 1.14-3.72), P < 0.0001], plasma insulin {ß: -0.28 [95% CI: -0.54-(-0.02)], P = 0.036}, body mass index {ß: -3.15 [95% CI: -5.26-(-0.05)], P = 0.046}, diabetes [ß: 44.49 (95% CI: 14.84-74.14), P = 0.003], glycosylated haemoglobin [ß: 1.92 (95% CI: 0.24-3.59), P = 0.025], New York Heart Association class [ß: 26.86 (95% CI: 5.99-47.72), P = 0.012], and NT-proBNP [ß: 0.03 (95% CI: 0.01-0.04), P = 0.001]. In a multivariate analysis, only FFAs predicted 3-OHB levels [ß: 216 (95% CI: 165-268), P > 0.001]. CONCLUSIONS: In patients with HFrEF, circulating 3-OHB was a strong predictor of all-cause mortality independently of NT-proBNP. Circulating FFAs were the best predictor of 3-OHB levels.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Humans , Middle Aged , Aged , Stroke Volume , Ventricular Function, Left , Prognosis , 3-Hydroxybutyric Acid , Cohort Studies
4.
JACC Heart Fail ; 11(10): 1337-1347, 2023 10.
Article in English | MEDLINE | ID: mdl-37452805

ABSTRACT

BACKGROUND: Cardiogenic shock (CS) is a life-threatening condition with sparse treatment options. The ketone body 3-hydroxybutyrate has favorable hemodynamic effects in patients with stable chronic heart failure. Yet, the hemodynamic effects of exogenous ketone ester (KE) in patients with CS remain unknown. OBJECTIVES: The authors aimed to assess the hemodynamic effects of single-dose enteral treatment with KE in patients with CS. METHODS: In a double-blind, crossover study, 12 patients with CS were randomized to an enteral bolus of KE and isocaloric, isovolumic placebo containing maltodextrin. Patients were assessed with pulmonary artery catheterization, arterial blood samples, echocardiography, and near-infrared spectroscopy for 3 hours following each intervention separated by a 3-hour washout period. RESULTS: KE increased circulating 3-hydroxybutyrate (2.9 ± 0.3 mmol/L vs 0.2 ± 0.3 mmol/L, P < 0.001) and was associated with augmented cardiac output (area under the curve of relative change: 61 ± 22 L vs 1 ± 18 L, P = 0.044). Also, KE increased cardiac power output (0.07 W [95% CI: 0.01-0.14]; P = 0.037), mixed venous saturation (3 percentage points [95% CI: 1-5 percentage points]; P = 0.010), and forearm perfusion (3 percentage points [95% CI: 0-6 percentage points]; P = 0.026). Right (P = 0.048) and left (P = 0.017) ventricular filling pressures were reduced whereas heart rate and mean arterial and pulmonary arterial pressures remained similar. Left ventricular ejection fraction improved by 4 percentage points (95% CI: 2-6 percentage points; P = 0.005). Glucose levels decreased by 2.6 mmol/L (95% CI: -5.2 to 0.0; P = 0.047) whereas insulin levels remained unaltered. CONCLUSIONS: Treatment with KE improved cardiac output, biventricular function, tissue oxygenation, and glycemic control in patients with CS (Treatment With the Ketone Body 3-hydroxybutyrate in Patients With Cardiogenic Shock [KETO-SHOCK1]; NCT04642768).


Subject(s)
Heart Failure , Shock, Cardiogenic , Humans , Shock, Cardiogenic/therapy , Stroke Volume , Ketones/pharmacology , Ketones/therapeutic use , 3-Hydroxybutyric Acid/pharmacology , 3-Hydroxybutyric Acid/therapeutic use , Cross-Over Studies , Ventricular Function, Left , Hemodynamics , Ketone Bodies/pharmacology , Ketone Bodies/therapeutic use
5.
J Am Heart Assoc ; 12(12): e029849, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37301762

ABSTRACT

Background The ketone body 3-hydroxybutyrate (3-OHB) increases cardiac output (CO) in patients with heart failure through unknown mechanisms. 3-OHB activates the hydroxycarboxylic acid receptor 2 (HCA2), which increases prostaglandins and suppresses circulating free fatty acids. We investigated whether the cardiovascular effects of 3-OHB involved HCA2 activation and if the potent HCA2-stimulator niacin may increase CO. Methods and Results Twelve patients with heart failure with reduced ejection fraction were included in a randomized crossover study and examined by right heart catheterization, echocardiography, and blood sampling on 2 separate days. On study day 1, patients received aspirin to block the HCA2 downstream cyclooxygenase enzyme, followed by 3-OHB and placebo infusions in random order. We compared the results with those of a previous study in which patients received no aspirin. On study day 2, patients received niacin and placebo. The primary end point was CO. 3-OHB increased CO (2.3 L/min, P<0.01), stroke volume (19 mL, P<0.01), heart rate (10 bpm, P<0.01), and mixed venous saturation (5%, P<0.01) with preceding aspirin. 3-OHB did not change prostaglandin levels, neither in the ketone/placebo group receiving aspirin nor the previous study cohort. Aspirin did not block 3-OHB-induced changes in CO (P=0.43). 3-OHB decreased free fatty acids by 58% (P=0.01). Niacin increased prostaglandin D2 levels by 330% (P<0.02) and reduced free fatty acids by 75% (P<0.01) but did not affect CO. Conclusions The acute increase in CO during 3-OHB infusion was not modified by aspirin, and niacin had no hemodynamic effects. These findings show that HCA2 receptor-mediated effects were not involved in the hemodynamic response to 3-OHB. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04703361.


Subject(s)
Heart Failure , Niacin , Humans , 3-Hydroxybutyric Acid , Niacin/pharmacology , Niacin/therapeutic use , Fatty Acids, Nonesterified , Cross-Over Studies , Hydroxybutyrates , Ketone Bodies , Heart Failure/diagnosis , Heart Failure/drug therapy , Prostaglandins
6.
J Am Heart Assoc ; 12(10): e028232, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37183871

ABSTRACT

Background Pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH) are debilitating diseases with a high mortality. Despite emerging treatments, pulmonary vascular resistance frequently remains elevated. However, the ketone body 3-hydroxybutyrate (3-OHB) may reduce pulmonary vascular resistance in these patients. Hence, the aim was to assess the hemodynamic effects of 3-OHB in patients with PAH or CTEPH. Methods and Results We enrolled patients with PAH (n=10) or CTEPH (n=10) and residual pulmonary hypertension. They received 3-OHB infusion and placebo (saline) for 2 hours in a randomized crossover study. Invasive hemodynamic and echocardiography measurements were performed. Furthermore, we investigated the effects of 3-OHB on the right ventricle of isolated hearts and isolated pulmonary arteries from Sprague-Dawley rats. Ketone body infusion increased circulating 3-OHB levels from 0.5±0.5 to 3.4±0.7 mmol/L (P<0.001). Cardiac output improved by 1.2±0.1 L/min (27±3%, P<0.001), and right ventricular annular systolic velocity increased by 1.4±0.4 cm/s (13±4%, P=0.002). Pulmonary vascular resistance decreased by 1.3±0.3 Wood units (18%±4%, P<0.001) with no significant difference in response between patients with PAH and CTEPH. In the rat studies, 3-OHB administration was associated with decreased pulmonary arterial tension compared with saline administration (maximal relative tension difference: 12±2%, P<0.001) and had no effect on right ventricular systolic pressures (P=0.63), whereas pressures rose at a slower pace (dP/dtmax, P=0.02). Conclusions In patients with PAH or CTEPH, ketone body infusion improves cardiac output and decreases pulmonary vascular resistance. Experimental rat studies support that ketone bodies relax pulmonary arteries. Long-term studies are warranted to assess the clinical role of hyperketonemia. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04615754.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Pulmonary Embolism , Animals , Rats , Chronic Disease , Cross-Over Studies , Familial Primary Pulmonary Hypertension , Hemodynamics/physiology , Ketone Bodies/pharmacology , Pulmonary Artery , Pulmonary Embolism/complications , Rats, Sprague-Dawley , Humans
7.
Platelets ; 25(8): 628-33, 2014.
Article in English | MEDLINE | ID: mdl-24246241

ABSTRACT

Rapid evaluation of platelet function may be advantageous in the setting of surgical and interventional procedures to tailor treatment of ongoing bleeding. We investigated if platelet function testing performed with the Multiplate® Analyzer (Roche Diagnostics, Mannheim, Germany) only 5 minutes after blood sampling yields reliable test results compared to analyses performed 30 minutes after sampling as currently recommended. We included 48 patients with type II diabetes and stable coronary artery disease treated with aspirin 75 mg daily and 50 healthy individuals not taking any medications. Platelet aggregometry by the Multiplate® Analyzer was performed 5 and 30 minutes after blood sampling using arachidonic acid (1.0 mM), collagen (3.2 µg/ml) and adenosine diphosphate (ADP; 6.5 µM) as agonists. Compliance with aspirin was verified by serum thromboxane B2 measurements. Aggregation levels assessed 5 minutes after blood sampling correlated strongly with those assessed after 30 minutes irrespective of the agonist used (r-values 0.75-0.89, p values <0.0001). Aggregation levels were 4-8% lower and displayed a larger standard deviation when measured 5 minutes after sampling, compared to 30 minutes after sampling. Weak, but significant correlations were observed between platelet aggregation and platelet count (r-values = 0.28-0.39; p values <0.01). The currently recommended 30-minute standing time can be omitted, when platelet aggregation is measured using the Multiplate® Analyzer. Platelet aggregation measured 5 minutes after blood sampling correlates strongly with aggregation measured 30 minutes after sampling, but yields slightly lower aggregation levels. The Multiplate® Analyzer enables rapid on-site evaluation of platelet function.


Subject(s)
Aspirin/pharmacology , Coronary Artery Disease/blood , Platelet Activation/physiology , Platelet Aggregation/drug effects , Platelet Function Tests/methods , Aged , Female , Humans , Male , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...