Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 50(16): 8697-704, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27434742

ABSTRACT

Information on human indoor exposure is necessary to assess the potential risk to individuals from many chemicals of interest. Dynamic indoor and human physicologically based pharmacokinetic (PBPK) models of the distribution of nonionizing, organic chemical concentrations in indoor environments resulting in delivered tissue doses are developed, described and tested. The Indoor model successfully reproduced independently measured, reported time-dependent air concentrations of chloroform released during showering and of 2-butyoxyethanol following use of a volatile surface cleaner. The Indoor model predictions were also comparable to those from a higher tier consumer model (ConsExpo 4.1) for the surface cleaner scenario. The PBPK model successful reproduced observed chloroform exhaled air concentrations resulting from an inhalation exposure. Fugacity based modeling provided a seamless description of the partitioning, fluxes, accumulation and release of the chemical in indoor media and tissues of the exposed subject. This has the potential to assist in health risk assessments, provided that appropriate physical/chemical property, usage characteristics, and toxicological information are available.


Subject(s)
Air Pollution, Indoor/analysis , Inhalation Exposure , Organic Chemicals/analysis , Chloroform/analysis , Humans , Models, Theoretical , Risk Assessment
2.
Environ Sci Technol ; 42(11): 3969-74, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18589953

ABSTRACT

Aerosol-mediated transport of perfluorooctanoate (PFO) from a water body to the atmosphere and the subsequent emission of gas-phase perfluorooctanoic acid (PFOA) was investigated. The potential for this process to facilitate long-range transport of PFOA/PFO was assessed. In a laboratory experiment, aerosols were generated and collected from deionized, fresh, and ocean waters spiked with PFO and analyzed by LC-MS/MS. Gas-phase samples were also collected from the system and analyzed for PFOA. Aerosols were found to have significantly higher concentrations of PFO than the parent water body (< or = 80 times for ocean waters). The PFOA, at equilibrium with the PFO in the aqueous aerosol, partitioned rapidly (t 1/2 = 7.2 s) out of the aerosol droplet. This suggests that rainout rates are likely to be longer than previously hypothesized. These results imply that water bodies are not a permanent sink for atmospheric PFOA as previous studies have suggested. The occurrence of contamination in remote regions may not depend solely on the previously hypothesized indirect sources but also on the long-range transport, via the gas phase, of direct releases of PFOA to both the aquatic and atmospheric environments.


Subject(s)
Air Pollutants/analysis , Caprylates/analysis , Fluorocarbons/analysis , Surface-Active Agents/analysis , Aerosols , Air Pollutants/chemistry , Caprylates/chemistry , Fluorocarbons/chemistry , Fresh Water/chemistry , Seawater/chemistry , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...