Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2015: 975789, 2015.
Article in English | MEDLINE | ID: mdl-26491697

ABSTRACT

We recently identified a nuclear variant of the BMP2 growth factor, called nBMP2. In an effort to understand the function of this variant protein, we generated a mouse line in which BMP2 is expressed and functions normally, but nBMP2 is excluded from the nucleus. This novel mutation allows the study of nBMP2 without compromising BMP2 function. To determine whether nBMP2 plays a role in immune function, we performed a series of experiments in which we compared mouse survival, organ weights, immune cells numbers, and bacterial load in wild type and nBmp2NLS(tm) mice following primary and secondary challenges with Staphylococcus aureus. Following primary challenge with S. aureus, wild type and nBmp2NLS(tm) mice showed no differences in survival or bacterial load and generated similar numbers and types of leukocytes, although mutant spleens were smaller than wild type. Secondary bacterial challenge with S. aureus, however, produced differences in survival, with increased mortality seen in nBmp2NLS(tm) mice. This increased mortality corresponded to higher levels of bacteremia in nBmp2NLS(tm) mice and to a reduced enlargement of mutant spleens in response to the secondary infection. Together, these results suggest that the recently described nuclear variant of BMP2 is necessary for efficient secondary immune responses.


Subject(s)
Bone Morphogenetic Protein 2/immunology , Mutation , Nuclear Proteins/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology , Animals , Bone Morphogenetic Protein 2/genetics , Humans , Mice , Mice, Mutant Strains , Nuclear Proteins/genetics , Staphylococcal Infections/genetics , Staphylococcal Infections/pathology
2.
J Orthop Res ; 33(12): 1776-83, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26135031

ABSTRACT

Animal models have historically provided an appropriate benchmark for understanding human pathology, treatment, and healing, but few animals are known to naturally develop intervertebral disc degeneration. The study of degenerative disc disease and its treatment would greatly benefit from a more comprehensive, and comparable animal model. Alpacas have recently been presented as a potential large animal model of intervertebral disc degeneration due to similarities in spinal posture, disc size, biomechanical flexibility, and natural disc pathology. This research further investigated alpacas by determining the prevalence of intervertebral disc degeneration among an aging alpaca population. Twenty healthy female alpacas comprised two age subgroups (5 young: 2-6 years; and 15 older: 10+ years) and were rated according to the Pfirrmann-grade for degeneration of the cervical intervertebral discs. Incidence rates of degeneration showed strong correlations with age and spinal level: younger alpacas were nearly immune to developing disc degeneration, and in older animals, disc degeneration had an increased incidence rate and severity at lower cervical levels. Advanced disc degeneration was present in at least one of the cervical intervertebral discs of 47% of the older alpacas, and it was most common at the two lowest cervical intervertebral discs. The prevalence of intervertebral disc degeneration encourages further investigation and application of the lower cervical spine of alpacas and similar camelids as a large animal model of intervertebral disc degeneration.


Subject(s)
Cervical Vertebrae/pathology , Intervertebral Disc Degeneration/pathology , Intervertebral Disc/pathology , Magnetic Resonance Imaging , Animals , Biomechanical Phenomena , Camelids, New World , Disease Models, Animal , Female , Image Processing, Computer-Assisted , Intervertebral Disc Degeneration/diagnosis , Least-Squares Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...