Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Int ; 146: 106178, 2021 01.
Article in English | MEDLINE | ID: mdl-33246245

ABSTRACT

A wide range of species, including marine mammals, seabirds, birds of prey, fish and bivalves, were investigated for potential population health risks resulting from contemporary (post 2000) mercury (Hg) exposure, using novel risk thresholds based on literature and de novo contamination data. The main geographic focus is on the Baltic Sea, while data from the same species in adjacent waters, such as the Greater North Sea and North Atlantic, were included for comparative purposes. For marine mammals, 23% of the groups, each composing individuals of a specific sex and maturity from the same species in a specific study region, showed Hg-concentrations within the High Risk Category (HRC) and Severe Risk Category (SRC). The corresponding percentages for seabirds, fish and bivalves were 2.7%, 25% and 8.0%, respectively, although fish and bivalves were not represented in the SRC. Juveniles from all species showed to be at no or low risk. In comparison to the same species in the adjacent waters, i.e. the Greater North Sea and the North Atlantic, the estimated risk for Baltic populations is not considerably higher. These findings suggest that over the past few decades the Baltic Sea has improved considerably with respect to presenting Hg exposure to its local species, while it does still carry a legacy of elevated Hg levels resulting from high neighbouring industrial and agricultural activity and slow water turnover regime.


Subject(s)
Bivalvia , Mercury , Animals , Animals, Wild , Fishes , Humans , Mercury/analysis , Mercury/toxicity , North Sea , Risk Assessment
2.
PLoS One ; 15(7): e0226532, 2020.
Article in English | MEDLINE | ID: mdl-32716933

ABSTRACT

We analysed intraclutch egg-size variation over the laying sequence in relation to clutch size, and the relation between clutch size and female body condition, in the Common Eider Somateria mollissima during an 8-year period. The aim was to assess if eiders adjusted egg size within the laying sequence depending on clutch sizes in response to body condition, as such an adjustment could have adaptive implications on reproductive success through a size advantage for the hatchlings. The analyses were performed on a population level; and then at the individual level using data from recaptured females that changed clutch size between years. Based on 1,099 clutches from 812 individual females, population clutch size averaged 4.13 eggs (range: 1-6), with 4- and 5-egg clutchesconstituting c.70% of all clutches, taking turns in being the most represented clutch size. Clutch size was positively related to female pre-laying body condition at both the population and individual levels. Egg size varied significantly within and between clutch sizes and changes were significantly related to the laying sequence. First eggs were significantly larger in 4-egg clutches and second eggs marginally smaller than in 5-egg clutches, a pattern also found among individual females changing clutch size between years. The relationship between female pre-laying body condition and clutch size, and the intraclutch egg-size pattern indicate that both clutch size and egg size are actively adapted to the pre-breeding body condition of the female. As egg size potentially optimise reproductive success through a size advantage in hatchlings, the observed pattern of intraclutch egg-size variation suggests that female eiders possesses a finely tuned conditional dependent mechanism that may optimize reproductive output in years were females are in suboptimal body condition for breeding.


Subject(s)
Ducks/physiology , Eggs/analysis , Animals , Breeding , Clutch Size/physiology , Female
3.
Environ Int ; 142: 105873, 2020 09.
Article in English | MEDLINE | ID: mdl-32585505

ABSTRACT

Blood plasma was collected during 2016-2018 from healthy incubating eiders (Somateria molissima, n = 183) in three Danish colonies, and healthy migrating pink-footed geese (Anser brachyrhynchus, n = 427) at their spring roost in Central Norway (Svalbard breeding population) and their novel flyway through the Finnish Baltic Sea (Russian breeding population). These species and flyways altogether represent terrestrial, brackish and marine ecosystems spanning from the Western to the Eastern and Northern part of the Baltic Sea. Plasma of these species was analysed for seroprevalence of specific avian influenza A (AI) antibodies to obtain information on circulating AI serotypes and exposure. Overall, antibody prevalence was 55% for the eiders and 47% for the pink-footed geese. Of AI-antibody seropositive birds, 12% (22/183) of the eiders and 3% (12/427) of the pink-footed geese had been exposed to AI of the potentially zoonotic serotypes H5 and/or H7 virus. AI seropositive samples selected at random (n = 33) showed a low frequency of serotypes H1, H6 and H9. Future projects should aim at sampling and isolating AI virus to characterize dominant serotypes and virus strains (PCR). This will increase our understanding of how AI exposure may affect health, breeding and population viability of Baltic common eiders and pink-footed geese as well as the potential spill-over to humans (zoonotic potential).


Subject(s)
Geese , Influenza in Birds , Animals , Ecosystem , Humans , Influenza in Birds/epidemiology , Norway , Russia , Seroepidemiologic Studies , Svalbard
4.
Environ Int ; 137: 105582, 2020 04.
Article in English | MEDLINE | ID: mdl-32086081

ABSTRACT

Here we investigate if lead may be a contributing factor to the observed population decline in a Baltic colony of incubating eiders (Somateria mollissima). Body mass and blood samples were obtained from 50 incubating female eiders at the Baltic breeding colony on Christiansø during spring 2017 (n = 27) and 2018 (n = 23). All the females were sampled twice during early (day 4) and late (day 24) incubation. The full blood was analysed for lead to investigate if the concentrations exceeded toxic thresholds or changed over the incubation period due to remobilisation from bones and liver tissue. Body mass, hatch date and number of chicks were also analysed with respect to lead concentrations. The body mass (mean ± SD g) increased significantly in the order: day 24 in 2018 (1561 ± 154 g) < day 24 in 2017 (1618 ± 156 g) < day 4 in 2018 (2183 ± 140 g) < day 4 in 2017 (2359 ± 167 g) (all p < 0.001). The lead concentrations increased significantly in the opposite order i.e. day 4 in 2017 (41.7 ± 67.1 µg/L) < day 24 in 2017 (55.4 ± 66.8 µg/L) < day 4 in 2018 (177 ± 196 µg/L) < day 24 in 2018 (258 ± 243) (all p < 0.001). From day 4 to 24, the eider females had a 1.33-fold increase in blood lead concentrations in 2017 and a 1.46-fold increase in 2018. Three of the birds (13%) sampled in 2018 had lead concentrations that exceeded concentrations of clinical poisoning (500 µg/L) and eleven (48%) had concentrations that exceeded the threshold for subclinical poisoning (200 µg/L). In 2017, none of the birds exceeded the high toxic threshold of clinical poisoning while only one (4%) exceeded the lower threshold for subclinical poisoning. Three of the birds (6%) sampled in 2018 had lead concentrations that exceeded those of clinical poisoning while 12 birds (24%) resampled in both years exceeded the threshold for subclinical poisoning. In addition, lead concentrations and body mass on day 4 affected hatch date positively in 2018 (both p < 0.03) but not in 2017. These results show that bioavailable lead in bone and liver tissue pose a threat to the health of about 25% of the incubating eiders sampled. This is particularly critical because eiders are largely capital breeding which means that incubating eiders are in an energetically stressed state. The origin of lead in incubating eiders in the Christiansø colony is unknown and it remains an urgent priority to establish the source, prevalence and mechanism for uptake. The increase in lead from day 4 to day 24 is due to bone and liver remobilization; however, the additional lead source(s) on the breeding grounds needs to be identified. Continued investigations should determine the origin, uptake mechanisms and degree of exposure to lead for individual birds. Such research should include necropsies, x-ray, lead isotope and stable C and N isotope analyses to find the lead sources(s) in the course of the annual cycle and how it may affect the population dynamics of the Christiansø colony which reflects the ecology of the Baltic eiders being suitable for biomonitoring the overall flyway.


Subject(s)
Ducks , Lead , Water Pollutants , Animals , Aquatic Organisms , Birds , Female , Lead/blood , Population Dynamics , Seasons , Water Pollutants/blood
5.
Ecol Evol ; 9(22): 12515-12530, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31788194

ABSTRACT

Harvested species population dynamics are shaped by the relative contribution of natural and harvest mortality. Natural mortality is usually not under management control, so managers must continuously adjust harvest rates to prevent overexploitation. Ideally, this requires regular assessment of the contribution of harvest to total mortality and how this affects population dynamics.To assess the impact of hunting mortality on the dynamics of the rapidly declining Baltic/Wadden Sea population of common eiders Somateria mollissima, we first estimated vital rates of ten study colonies over the period 1970-2015. By means of a multi-event capture-recovery model, we then used the cause of death of recovered individuals to estimate proportions of adult females that died due to hunting or other causes. Finally, we adopted a stochastic matrix population modeling approach based on simulations to investigate the effect of past and present harvest regulations on changes in flyway population size and composition.Results showed that even the complete ban on shooting females implemented in 2014 in Denmark, where most hunting takes place, was not enough to stop the population decline given current levels of natural female mortality. Despite continued hunting of males, our predictions suggest that the proportion of females will continue to decline unless natural mortality of the females is reduced.Although levels of natural mortality must decrease to halt the decline of this population, we advocate that the current hunting ban on females is maintained while further investigations of factors causing increased levels of natural mortality among females are undertaken. Synthesis and applications. At the flyway scale, continuous and accurate estimates of vital rates and the relative contribution of harvest versus other mortality causes are increasingly important as the population effect of adjusting harvest rates is most effectively evaluated within a model-based adaptive management framework.

6.
Environ Sci Pollut Res Int ; 26(6): 6133-6140, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30617892

ABSTRACT

The extensive use of anticoagulant rodenticides (ARs) results in widespread unintentional exposure of non-target rodents and secondary poisoning of predators despite regulatory measures to manage and reduce exposure risk. To elucidate on the potential vectoring of ARs into surrounding habitats by non-target small mammals, we determined bromadiolone prevalence and concentrations in rodents and shrews near bait boxes during an experimental application of the poison for 2 weeks. Overall, bromadiolone was detected in 12.6% of all small rodents and insectivores. Less than 20 m from bait boxes, 48.6% of small mammals had detectable levels of bromadiolone. The prevalence of poisoned small mammals decreased with distance to bait boxes, but bromadiolone concentration in the rodenticide positive individuals did not. Poisoned small mammals were trapped up to 89 m from bait boxes. Bromadiolone concentrations in yellow-necked mice (Apodemus flavicollis) were higher than concentrations in bank vole (Myodes glareolus), field vole (Microtus agrestis), harvest mouse (Micromys minutus), and common shrew (Sorex araneus). Our field trials documents that chemical rodent control results in widespread exposure of non-target small mammals and that AR poisoned small mammals disperse away from bating sites to become available to predators and scavengers in large areas of the landscape. The results suggest that the unintentional secondary exposure of predators and scavengers is an unavoidable consequence of chemical rodent control outside buildings and infrastructures.


Subject(s)
4-Hydroxycoumarins/analysis , Arvicolinae , Environmental Exposure/analysis , Murinae , Rodenticides/analysis , 4-Hydroxycoumarins/toxicity , Animals , Anticoagulants/analysis , Anticoagulants/toxicity , Denmark , Environmental Exposure/statistics & numerical data , Predatory Behavior , Prevalence , Rodent Control/methods , Rodentia , Rodenticides/toxicity , Shrews
7.
Ambio ; 46(Suppl 2): 290-300, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28215013

ABSTRACT

We here review the collision risks posed by large-bodied, flocking geese to aircraft, exacerbated by recent major increases in northern hemisphere goose populations and air traffic volume. Mitigation of goose-aircraft strike risks requires knowledge of local goose movements, global goose population dynamics and ecology. Airports can minimise goose strikes by managing habitats within the airport property, applying deterrents to scare geese away and lethal control, but goose migration and movements at greater spatial scales present greater challenges. Habitat management outside of airports can locally reduce goose attractiveness of peripheral areas, but requires stakeholder involvement and coordination. Information on bird strike rates, individual goose movements and goose population dynamics is essential to understand how best to reduce the risk of goose strikes. Avian radar provides tactical information for mitigation measures and strategic data on local patterns of goose migration and habitat use. In the face of expanding air traffic, goose distributions and populations, these threats need to be integrated with other local, national and international stakeholder involvement to secure viable solutions to multiple conflicts.


Subject(s)
Accidents, Aviation , Conservation of Natural Resources , Geese/physiology , Accidents, Aviation/statistics & numerical data , Animal Distribution , Animals , Ecosystem , Population Dynamics
8.
PLoS One ; 10(8): e0135100, 2015.
Article in English | MEDLINE | ID: mdl-26247849

ABSTRACT

To sustainably exploit a population, it is crucial to understand and reduce uncertainties about population processes and effects of harvest. In migratory species, management is challenged by geographically separated changing environmental conditions, which may cause unexpected changes in species distribution and harvest. We describe the development in the harvest of Svalbard-breeding pink-footed geese (Anser brachyrhynchus) in relation to the observed trajectory and migratory behaviour of the population. In autumn, geese migrate via stopover sites in Norway and Denmark (where they are hunted) to wintering grounds in the Netherlands and Belgium (where they are protected). In Denmark and Norway harvesting increased stepwise during the 2000s. The increase in the population size only partly explained the change. The change corresponded to a simultaneous stepwise increase in numbers of geese staging in Denmark throughout autumn and winter; geese also moved further inland to feed which collectively increased their exposure to hunting. In Norway the increase in harvest reflected greater utilisation of lowland farmland areas by geese, increasing their hunting exposure. The study demonstrates how changes in migratory behaviour can abruptly affect exposure to hunting, which showed a functional response to increased temporal and spatial availability of geese. The harvest has now reached a level likely to cause a population decline. It highlights the need for flexible, internationally coordinated hunting regulations and reliable up-to-date population estimates and hunting bag statistics, which are rare in European management of migratory waterbirds. Without such information decisions are left with judgments based on population estimates, which often have time lags of several years between recording and reporting, hampering possibilities for the timely adjustment of management actions.


Subject(s)
Animal Migration/physiology , Conservation of Natural Resources , Geese/physiology , Animals , Belgium , Breeding , Denmark , Female , Humans , Male , Netherlands , Population Dynamics , Seasons , Svalbard
9.
Arch Environ Contam Toxicol ; 63(3): 437-44, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22588365

ABSTRACT

The extensive use of anticoagulant rodenticides (ARs) for rodent control has led to widespread secondary exposure in nontarget predatory wildlife species. We investigated exposure rates and concentrations of five ARs in liver samples from five raptors and six owls from Denmark. A total of 430 birds were analysed. ARs were detected in 84-100 % of individual birds within each species. Multiple AR exposure was detected in 73 % of all birds. Average number of substances detected in individual birds was 2.2 with no differences between owls and raptors. Difenacoum, bromadiolone, and brodifacoum were the most prevalent substances and occurred in the highest concentrations. Second-generation ARs made up 96 % of the summed AR burden. Among the six core species (sample size >30), summed AR concentrations were lower in rough-legged buzzard (Buteo lagopus) and long-eared owl (Asio otus) than in barn owl (Tyto alba), buzzard (B. buteo), kestrel (Falco tinnunculus), and tawny owl (Strix aluco). There was a strong tendency for seasonal variations in the summed AR concentration with levels being lowest during autumn, which is probably related to an influx of less-exposed migrating birds from northern Scandinavia during autumn. High hepatic AR residue concentrations (>100 ng/g wet weight), which have been associated with symptoms of rodenticide poisoning and increased mortality, were recorded high frequencies (12.9-37.4 %) in five of the six core species. The results suggest that the present use of ARs in Denmark, at least locally, may have adverse effects on reproduction and, ultimately, population status in some raptors and owls.


Subject(s)
4-Hydroxycoumarins/metabolism , Anticoagulants/metabolism , Birds/metabolism , Environmental Exposure/statistics & numerical data , Environmental Pollutants/metabolism , Rodenticides/metabolism , 4-Hydroxycoumarins/analysis , 4-Hydroxycoumarins/biosynthesis , Animals , Anticoagulants/analysis , Denmark , Environmental Exposure/analysis , Female , Male , Raptors/metabolism , Rodenticides/analysis , Strigiformes/metabolism
10.
Sci Total Environ ; 409(12): 2373-8, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21477845

ABSTRACT

Anticoagulant rodenticides are widely used to control rodent populations but they also pose a risk of secondary poisoning in non-target predators. Studies on anticoagulant rodenticide exposure of non-target species have mainly reported on frequency of occurrence. They have rarely analyzed variations in residue concentrations. We examine the occurrence and concentrations of five anticoagulant rodenticides in liver tissue from 61 stoats (Mustela erminea) and 69 weasels (Mustela nivalis) from Denmark. Anticoagulant rodenticides were detected in 97% of stoats and 95% of weasels. 79% of the animals had detectable levels of more than one substance. Difenacoum had the highest prevalence (82% in stoats and 88% in weasels) but bromadiolone was detected in the highest concentrations in both stoat (1.290 µg/g ww) and weasel (1.610 µg/g ww). Anticoagulant rodenticide concentrations were highest during autumn and winter and varied with sampling method. Anticoagulant rodenticide concentrations were higher in stoats and weasels with unknown cause of death than in specimens killed by physical trauma. There was a negative correlation between anticoagulant rodenticide concentrations and body condition. Our results suggest that chemical rodent control in Denmark results in an extensive exposure of non-target species and may adversely affect the fitness of some stoats and weasels.


Subject(s)
Anticoagulants/metabolism , Environmental Pollutants/metabolism , Mustelidae/metabolism , Rodenticides/metabolism , 4-Hydroxycoumarins/metabolism , Animals , Denmark , Environmental Monitoring , Environmental Pollution/statistics & numerical data , Female , Liver/metabolism , Male , Mink/metabolism , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...