Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sleep ; 42(10)2019 10 09.
Article in English | MEDLINE | ID: mdl-31504971

ABSTRACT

STUDY OBJECTIVES: The present studies examine the effects of NMDAR activation by NYX-2925 diurnal rhythmicity of both sleep and wake as well as emotion. METHODS: Twenty-four-hour sleep EEG recordings were obtained in sleep-deprived and non-sleep-deprived rats. In addition, the day-night cycle of both activity and mood was measured using home cage ultrasonic-vocalization recordings. RESULTS: NYX-2925 significantly facilitated non-REM (NREM) sleep during the lights-on (sleep) period, and this effect persisted for 3 days following a single dose in sleep-deprived rats. Sleep-bout duration and REM latencies were increased without affecting total REM sleep, suggesting better sleep quality. In addition, delta power during wake was decreased, suggesting less drowsiness. NYX-2925 also rescued learning and memory deficits induced by sleep deprivation, measured using an NMDAR-dependent learning task. Additionally, NYX-2925 increased positive affect and decreased negative affect, primarily by facilitating the transitions from sleep to rough-and-tumble play and back to sleep. In contrast to NYX-2925, the NMDAR antagonist ketamine acutely (1-4 hours post-dosing) suppressed REM and non-REM sleep, increased delta power during wake, and blunted the amplitude of the sleep-wake activity rhythm. DISCUSSION: These data suggest that NYX-2925 could enhance behavioral plasticity via improved sleep quality as well as vigilance during wake. As such, the facilitation of sleep by NYX-2925 has the potential to both reduce symptom burden on neurological and psychiatric disorders as well as serve as a biomarker for drug effects through restoration of sleep architecture.


Subject(s)
Affect/physiology , Circadian Rhythm/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Sleep Deprivation/physiopathology , Sleep/physiology , Spiro Compounds/pharmacology , Affect/drug effects , Animals , Circadian Rhythm/drug effects , Electroencephalography/methods , Male , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/agonists , Sleep/drug effects , Sleep Deprivation/drug therapy , Spiro Compounds/therapeutic use , Wakefulness/drug effects , Wakefulness/physiology
2.
J Neurophysiol ; 113(1): 116-31, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25253471

ABSTRACT

Benzodiazepine drugs, through interaction with GABA(Aα1), GABA(Aα2,3), and GABA(Aα5) subunits, modulate cortical network oscillations, as reflected by a complex signature in the EEG power spectrum. Recent drug discovery efforts have developed GABA(Aα2,3)-subunit-selective partial modulators in an effort to dissociate the side effect liabilities from the efficacy imparted by benzodiazepines. Here, we evaluated rat EEG and behavioral end points during dosing of nine chemically distinct compounds that we confirmed statistically to selectively to enhance GABA(Aα2,3)-mediated vs. GABA(Aα1) or GABA(Aα5) currents in voltage clamped oocytes transfected with those GABA(A) subunits. These compounds were shown with in vivo receptor occupancy techniques to competitively displace [(3)H]flumazenil in multiple brain regions following peripheral administration at increasing doses. Over the same dose range, the compounds all produced dose-dependent EEG spectral power increases in the ß- and and γ-bands. Finally, the dose range that increased γ-power coincided with that eliciting punished over unpunished responding in a behavioral conflict model of anxiety, indicative of anxiolysis without sedation. EEG γ-band power increases showed a significant positive correlation to in vitro GABA(Aα2,3) modulatory intrinsic activity across the compound set, further supporting a hypothesis that this EEG signature was linked specifically to pharmacological modulation of GABA(Aα2,3) signaling. These findings encourage further evaluation of this EEG signature as a noninvasive clinical translational biomarker that could ultimately facilitate development of GABA(Aα2,3)-subtype-selective drugs for anxiety and potentially other indications.


Subject(s)
Anti-Anxiety Agents/pharmacology , Beta Rhythm/drug effects , Brain/drug effects , GABA Agents/pharmacology , Gamma Rhythm/drug effects , Animals , Anti-Anxiety Agents/pharmacokinetics , Anxiety/drug therapy , Anxiety/physiopathology , Auditory Perception/drug effects , Auditory Perception/physiology , Beta Rhythm/physiology , Brain/physiopathology , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Conflict, Psychological , Dose-Response Relationship, Drug , Electrodes, Implanted , Electroencephalography , GABA Agents/pharmacokinetics , Gamma Rhythm/physiology , Linear Models , Male , Patch-Clamp Techniques , Rats, Long-Evans , Rats, Sprague-Dawley , Receptors, GABA-A/metabolism
3.
Bioorg Med Chem ; 19(9): 2927-38, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21498079

ABSTRACT

Positive modulators at the benzodiazepine site of α2- and α3-containing GABA(A) receptors are believed to be anxiolytic. Through oocyte voltage clamp studies, we have discovered two series of compounds that are positive modulators at α2-/α3-containing GABA(A) receptors and that show no functional activity at α1-containing GABA(A) receptors. We report studies to improve this functional selectivity and ultimately deliver clinical candidates. The functional SAR of cinnolines and quinolines that are positive allosteric modulators of the α2- and α3-containing GABA(A) receptors, while simultaneously neutral antagonists at α1-containing GABA(A) receptors, is described. Such functionally selective modulators of GABA(A) receptors are expected to be useful in the treatment of anxiety and other psychiatric illnesses.


Subject(s)
Receptors, GABA-A/chemistry , Allosteric Regulation , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/pharmacology , Benzodiazepines/chemistry , GABA-A Receptor Antagonists/chemical synthesis , GABA-A Receptor Antagonists/chemistry , GABA-A Receptor Antagonists/pharmacology , Heterocyclic Compounds, 2-Ring/chemistry , Quinolines/chemistry , Receptors, GABA-A/metabolism , Structure-Activity Relationship
4.
Biol Psychiatry ; 69(1): 12-8, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-20965497

ABSTRACT

BACKGROUND: Nicotine improves cognition in humans and animal models of neuropsychiatric disorders. Here, we sought to establish whether selective stimulation of the neuronal nicotinic α7 receptor could improve spatial working memory in nonhuman primates. METHODS: Beginning with an estimated dose range from rodent studies, the dose of the α7 agonist AZD0328 was titrated for a significant impact on working memory in rhesus macaques after acute administration. After training to stability on the spatial delayed response task, subjects were administered AZD0328 (1.6 ng/kg-.48 mg/kg; intramuscular) or vehicle 30 min before cognitive testing. AZD0328 (1 ng/kg-1.0 µg/kg; intramuscular) was then administered in a repeated, intermittent ascending dose regimen where each dose was given in two bouts for 4 days with a 1-week washout in between bouts, followed by 2-week washout. RESULTS: Acute AZD0328 improved cognitive performance when the dose was titrated down to .0016 and .00048 mg/kg from a cognitively impairing dose of .48 mg/kg. In a subgroup, sustained enhancement of working memory was evident for 1 month or more after acute treatment. Immediate and sustained cognitive enhancement was also found during and after repeated administration of AZD0328 at .001 mg/kg. CONCLUSIONS: These findings demonstrate that extremely low doses of a nicotinic α7 agonist can have profound acute and long-lasting beneficial consequences for cognition, dependent upon the integrity of dorsolateral prefrontal cortex. Thus, the α7 receptor might have a fundamental role in the neural circuitry of working memory and in the synaptic plasticity upon which it might depend.


Subject(s)
Furans/pharmacology , Memory, Short-Term/drug effects , Nootropic Agents/pharmacology , Psychomotor Performance/drug effects , Quinuclidines/pharmacology , Receptors, Nicotinic/drug effects , Animals , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Evaluation, Preclinical , Female , Furans/administration & dosage , Furans/pharmacokinetics , Injections, Intramuscular , Macaca mulatta , Male , Nootropic Agents/administration & dosage , Nootropic Agents/pharmacokinetics , Quinuclidines/administration & dosage , Quinuclidines/pharmacokinetics , alpha7 Nicotinic Acetylcholine Receptor
5.
J Neurosci ; 30(49): 16475-84, 2010 Dec 08.
Article in English | MEDLINE | ID: mdl-21147987

ABSTRACT

The significance of the mismatch negativity (MMN), an event-related potential measured in humans which indexes novelty in the auditory environment, has motivated a search for a cellular correlate of this process. A leading candidate is stimulus-specific adaptation (SSA) in auditory cortex units, which shares several characteristics with the MMN. Whether auditory cortex responses encode sensory novelty, a defining property of the MMN, however, has not been resolved. To evaluate this key issue, we used several variations of the auditory oddball paradigm from the human literature and examined psychophysical and pharmacological properties of multiunit activity in the auditory cortex of awake rodents. We found converging evidence dissociating SSA from sensory novelty and the MMN. First, during an oddball paradigm with frequency deviants, neuronal responses showed clear SSA but failed to encode novelty in a manner analogous to the human MMN. Second, oddball paradigms using intensity or duration deviants revealed a pattern of unit responses that showed sensory adaptation, but again without any measurable novelty correlates aligning to the human MMN. Finally NMDA antagonists, which are known to disrupt the MMN, suppressed the magnitude of multiunit responses in a nonspecific manner, leaving the process of SSA intact. Together, our results suggest that auditory novelty detection as indexed by the MMN is dissociable from SSA at the level of activity encoded by auditory cortex neurons. Further, the NMDA sensitivity reported for the MMN, which models the disruption of MMN observed in schizophrenia, may occur at a mechanistic locus outside of SSA.


Subject(s)
Adaptation, Physiological/physiology , Auditory Cortex/physiology , Auditory Perception/physiology , Contingent Negative Variation/physiology , Evoked Potentials, Auditory/physiology , N-Methylaspartate/metabolism , Acoustic Stimulation/methods , Adaptation, Physiological/drug effects , Analysis of Variance , Animals , Auditory Cortex/drug effects , Auditory Perception/drug effects , Contingent Negative Variation/drug effects , Dizocilpine Maleate/pharmacology , Electroencephalography/methods , Evoked Potentials, Auditory/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Psychoacoustics , Rats , Rodentia , Wakefulness/physiology
6.
Biol Psychiatry ; 67(10): 998-1001, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20189164

ABSTRACT

BACKGROUND: Ketamine has been used to model cognitive and behavioral symptoms of schizophrenia. Current hypotheses state that inadequate glutamatergic transmission in schizophrenia leads to a deficiency in gamma-aminobutyric acid (GABA)ergic inhibitory mechanisms and treatment with a GABA type A receptor subunits alpha2/alpha3 (GABA(Aalpha2/3)) modulator improved working memory performance in a preliminary study in patients. Here, we used ketamine to impair spatial working memory and disrupt behavior to examine the capacity for the GABA(Aalpha2/3) agonist 7-(1,1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine (TPA023) to reverse these symptoms. METHODS: Rhesus monkeys received TPA023 (.7, 2.0, and 5 mg/kg; by mouth) or vehicle 45 minutes before ketamine (1.0-1.7 mg/kg; intramuscular) or saline in a semirandomized Latin square design. Behavioral observations were acquired at approximately 5 minutes, and spatial delayed response performance was tested at 15 minutes postinjection. RESULTS: Ketamine produced a profound impairment in spatial working memory in association with the emergence of hallucinatory-like behaviors. TPA023 at all doses blocked ketamine's cognitive-impairing ability but did not influence the behavioral symptoms. CONCLUSIONS: Acute GABA(Aalpha2/3) agonist administration reverses the working memory deficits induced by ketamine in primates. This finding indicates that the consequences of N-methyl-D-aspartate deficiency on the function of prefrontal circuits involved in working memory can be completely overcome by acute enhancement of GABA signaling.


Subject(s)
GABA-A Receptor Agonists , Ketamine/antagonists & inhibitors , Memory Disorders/chemically induced , Memory, Short-Term/drug effects , Pyridazines/pharmacology , Triazoles/pharmacology , Animals , Behavior, Animal/drug effects , Dose-Response Relationship, Drug , Drug Interactions , Ketamine/pharmacology , Macaca mulatta
7.
J Neurosci ; 29(45): 14271-86, 2009 Nov 11.
Article in English | MEDLINE | ID: mdl-19906975

ABSTRACT

M(1) muscarinic acetylcholine receptors (mAChRs) may represent a viable target for treatment of disorders involving impaired cognitive function. However, a major limitation to testing this hypothesis has been a lack of highly selective ligands for individual mAChR subtypes. We now report the rigorous molecular characterization of a novel compound, benzylquinolone carboxylic acid (BQCA), which acts as a potent, highly selective positive allosteric modulator (PAM) of the rat M(1) receptor. This compound does not directly activate the receptor, but acts at an allosteric site to increase functional responses to orthosteric agonists. Radioligand binding studies revealed that BQCA increases M(1) receptor affinity for acetylcholine. We found that activation of the M(1) receptor by BQCA induces a robust inward current and increases spontaneous EPSCs in medial prefrontal cortex (mPFC) pyramidal cells, effects which are absent in acute slices from M(1) receptor knock-out mice. Furthermore, to determine the effect of BQCA on intact and functioning brain circuits, multiple single-unit recordings were obtained from the mPFC of rats that showed BQCA increases firing of mPFC pyramidal cells in vivo. BQCA also restored discrimination reversal learning in a transgenic mouse model of Alzheimer's disease and was found to regulate non-amyloidogenic APP processing in vitro, suggesting that M(1) receptor PAMs have the potential to provide both symptomatic and disease modifying effects in Alzheimer's disease patients. Together, these studies provide compelling evidence that M(1) receptor activation induces a dramatic excitation of PFC neurons and suggest that selectively activating the M(1) mAChR subtype may ameliorate impairments in cognitive function.


Subject(s)
Carboxylic Acids/pharmacology , Cholinergic Agents/pharmacology , Learning Disabilities/drug therapy , Neurons/drug effects , Prefrontal Cortex/drug effects , Quinolones/pharmacology , Reversal Learning/drug effects , Animals , CHO Cells , Cricetinae , Cricetulus , Female , Humans , In Vitro Techniques , Learning Disabilities/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neurons/physiology , Prefrontal Cortex/physiology , Prefrontal Cortex/physiopathology , Rats , Rats, Sprague-Dawley , Receptor, Muscarinic M1/metabolism , Reversal Learning/physiology
8.
Biochem Pharmacol ; 78(7): 880-8, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19615981

ABSTRACT

AZD0328, a novel spirofuropyridine neuronal nicotinic receptor partial agonist, was used to investigate the role of alpha7 neuronal nicotinic receptor (NNR) activation in the modulation of midbrain dopamine neuron function, cortical dopamine release and on two behavioral tasks known to be dependent on optimal levels of cortical dopamine. In vivo recordings from area 10 (ventral tegmental area) in rat brain showed an increased firing of putative dopamine neurons in response to low (0.00138 mg/kg) doses of AZD0328. Bursting patterns of dopamine neuron activity remained largely unchanged by application of AZD0328. In vivo microdialysis in awake rats showed an increase in extracellular prefrontal cortical dopamine in response to low doses of AZD0328. Compound-stimulated dopamine release showed an inverted dose effect relation that was maximal at the lowest dose tested (0.00178 mg/kg). Peak extracellular dopamine levels were reached 2h after dosing with AZD0328. Acquisition of operant responding with delayed reinforcement in rats was dose dependently enhanced by AZD0328 with a plateau effect measured at 0.003 mg/kg. This effect was blocked by pre-treatment of animals with the selective alpha7 antagonist methyllycaconitine. AZD0328 improved novel object recognition in mice over a broad range of doses (0.00178-1.78 mg/kg) and the compound effect was found to be absent in homozygous alpha7 KO animals. Together, these data indicate that selective interaction with alpha7 NNRs by AZD0328 selectively enhances midbrain dopaminergic neuronal activity causing an enhancement of cortical dopamine levels; these neurochemical changes likely, underlie the positive behavioral responses observed in two different animal models. Our results suggest selective alpha7 NNR agonists may have significant therapeutic utility in neurologic and psychiatric indications where cognitive deficits and dopamine neuron dysfunction co-exist.


Subject(s)
Attention/drug effects , Cerebral Cortex/drug effects , Dopamine/metabolism , Furans/pharmacology , Learning/drug effects , Nicotinic Agonists/pharmacology , Quinuclidines/pharmacology , Receptors, Nicotinic/physiology , Action Potentials/drug effects , Animals , Cell Line , Cerebral Cortex/metabolism , Conditioning, Operant/drug effects , Female , Humans , Male , Neurons/physiology , Oocytes/drug effects , Oocytes/physiology , Patch-Clamp Techniques , Radioligand Assay , Rats , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Reinforcement, Psychology , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/physiology , Xenopus laevis , alpha7 Nicotinic Acetylcholine Receptor
9.
J Neurophysiol ; 93(5): 3001-6, 2005 May.
Article in English | MEDLINE | ID: mdl-15846002

ABSTRACT

Although bilateral fimbria-fornix (FF) lesioning impairs spatial performance in animals, the literature is equivocal regarding its effects on hippocampal long-term potentiation (LTP). We examined the effects of FF lesioning on LTP induction in the Schaffer collateral-CA1 pathway in vivo with a protocol that delivered theta burst stimulation (TBS) trains of increasing length until a sufficient length was reached to induce LTP of the monosynaptic field excitatory postsynaptic potential (fEPSP). Experiments were performed in urethan-anesthetized Long-Evans rats either 4 or 12-16 wk after lesioning. In sham-operated controls, TBS trains ranging from 4 to 12 bursts were sufficient to induce robust LTP [170 +/- 10% (mean +/- SF) of control fEPSP slope; n = 8]. Four-week post -FF-lesioned animals also displayed clear LTP (167 +/- 12% of control fEPSP slope; n = 4) that did not differ from the shams (P > 0.05). In contrast, animals in the 12- to 16-wk post-lesion group showed a highly significant deficit in LTP induction (95 +/- 3% of control fEPSP slope; n = 8; < or =28 burst TBS trains tested; P < 0.001 vs. sham- and 4-wk post-FF-lesion groups). Other quantitative measures of synaptic excitability (i.e., baseline fEPSP slope and input-output relation) did not differ between the sham- and the 12- to 16-wk post-FF-lesion groups. These results indicate that the FF lesion leads to an enduring defect in hippocampal long-term synaptic plasticity that may relate mechanistically to the cognitive deficits characterized in this model.


Subject(s)
Brain Injuries/physiopathology , Fornix, Brain/physiopathology , Hippocampus/physiopathology , Long-Term Potentiation/physiology , Synapses/physiology , Animals , Dose-Response Relationship, Radiation , Electric Stimulation/methods , Electroencephalography/methods , Excitatory Postsynaptic Potentials/physiology , Long-Term Potentiation/radiation effects , Male , Rats , Rats, Long-Evans , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...