Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21249672

ABSTRACT

PurposeWe aimed to describe the demographics, cancer subtypes, comorbidities and outcomes of patients with a history of cancer with COVID-19 from March to June 2020. Secondly, we compared patients hospitalized with COVID-19 to patients diagnosed with COVID-19 and patients hospitalized with influenza. MethodsWe conducted a cohort study using eight routinely-collected healthcare databases from Spain and the US, standardized to the Observational Medical Outcome Partnership common data model. Three cohorts of patients with a history of cancer were included: i) diagnosed with COVID-19, ii) hospitalized with COVID-19, and iii) hospitalized with influenza in 2017-2018. Patients were followed from index date to 30 days or death. We reported demographics, cancer subtypes, comorbidities, and 30-day outcomes. ResultsWe included 118,155 patients with a cancer history in the COVID-19 diagnosed and 41,939 in the COVID-19 hospitalized cohorts. The most frequent cancer subtypes were prostate and breast cancer (range: 5-19% and 1-14% in the diagnosed cohort, respectively). Hematological malignancies were also frequent, with non-Hodgkins lymphoma being among the 5 most common cancer subtypes in the diagnosed cohort. Overall, patients were more frequently aged above 65 years and had multiple comorbidities. Occurrence of death ranged from 8% to 14% and from 18% to 26% in the diagnosed and hospitalized COVID-19 cohorts, respectively. Patients hospitalized with influenza (n=242,960) had a similar distribution of cancer subtypes, sex, age and comorbidities but lower occurrence of adverse events. ConclusionPatients with a history of cancer and COVID-19 have advanced age, multiple comorbidities, and a high occurence of COVID-19-related events. Additionaly, hematological malignancies were frequent in these patients.This observational study provides epidemiologic characteristics that can inform clinical care and future etiological studies.

2.
Article in English | WPRIM (Western Pacific) | ID: wpr-874605

ABSTRACT

Objectives@#We incorporated the Korean Electronic Data Interchange (EDI) vocabulary into Observational Medical Outcomes Partnership (OMOP) vocabulary using a semi-automated process. The goal of this study was to improve the Korean EDI as a standard medical ontology in Korea. @*Methods@#We incorporated the EDI vocabulary into OMOP vocabulary through four main steps. First, we improved the current classification of EDI domains and separated medical services into procedures and measurements. Second, each EDI concept was assigned a unique identifier and validity dates. Third, we built a vertical hierarchy between EDI concepts, fully describing child concepts through relationships and attributes and linking them to parent terms. Finally, we added an English definition for each EDI concept. We translated the Korean definitions of EDI concepts using Google.Cloud.Translation.V3, using a client library and manual translation. We evaluated the EDI using 11 auditing criteria for controlled vocabularies. @*Results@#We incorporated 313,431 concepts from the EDI to the OMOP Standardized Vocabularies. For 10 of the 11 auditing criteria, EDI showed a better quality index within the OMOP vocabulary than in the original EDI vocabulary. @*Conclusions@#The incorporation of the EDI vocabulary into the OMOP Standardized Vocabularies allows better standardization to facilitate network research. Our research provides a promising model for mapping Korean medical information into a global standard terminology system, although a comprehensive mapping of official vocabulary remains to be done in the future.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20229401

ABSTRACT

ObjectiveMost patients severely affected by COVID-19 have been elderly and patients with underlying chronic disease such as diabetes, cardiovascular disease, or respiratory disease. People living with HIV (PLHIV) may have greater risk of contracting or developing severe COVID-19 due to the underlying HIV infection or higher prevalence of comorbidities. DesignThis is a cohort study, including PLHIV diagnosed, hospitalized, or requiring intensive services for COVID-19. MethodsData sources include routine electronic medical record or claims data from the U.S. and Spain. Patient demographics, comorbidities, and medication history are described. ResultFour data sources had a population of HIV/COVID-19 coinfected patients ranging from 288 to 4606 lives. PLHIV diagnosed with COVID-19 were younger than HIV-negative patients diagnosed with COVID-19. PLHIV diagnosed with COVID-19 diagnosis had similar comorbidities as HIV-negative COVID-19 patients with higher prevalence of those comorbidities and history of severe disease. Treatment regimens were similar between PLHIV diagnosed with COVID-19 or PLHIV requiring intensive services. ConclusionsOur study uses routine practice data to explore HIV impact on COVID-19, providing insight into patient history prior to COVID-19. We found that HIV and COVID-19 coinfected patients have higher prevalence of underlying comorbidities such as cardiovascular and respiratory disease as compared to HIV-negative COVID-19 infected patients. We also found that, across the care cascade, co-infected patients who received intensive services were more likely to have more serious underlying disease or a history of more serious events as compared to PLHIV who were diagnosed with COVID-19.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20222083

ABSTRACT

ObjectivesTo characterize the demographics, comorbidities, symptoms, in-hospital treatments, and health outcomes among children/adolescents diagnosed or hospitalized with COVID-19. Secondly, to describe health outcomes amongst children/adolescents diagnosed with previous seasonal influenza. DesignInternational network cohort. SettingReal-world data from European primary care records (France/Germany/Spain), South Korean claims and US claims and hospital databases. ParticipantsDiagnosed and/or hospitalized children/adolescents with COVID-19 at age <18 between January and June 2020; diagnosed with influenza in 2017-2018. Main outcome measuresBaseline demographics and comorbidities, symptoms, 30-day in-hospital treatments and outcomes including hospitalization, pneumonia, acute respiratory distress syndrome (ARDS), multi-system inflammatory syndrome (MIS-C), and death. ResultsA total of 55,270 children/adolescents diagnosed and 3,693 hospitalized with COVID-19 and 1,952,693 diagnosed with influenza were studied. Comorbidities including neurodevelopmental disorders, heart disease, and cancer were all more common among those hospitalized vs diagnosed with COVID-19. The most common COVID-19 symptom was fever. Dyspnea, bronchiolitis, anosmia and gastrointestinal symptoms were more common in COVID-19 than influenza. In-hospital treatments for COVID-19 included repurposed medications (<10%), and adjunctive therapies: systemic corticosteroids (6.8% to 37.6%), famotidine (9.0% to 28.1%), and antithrombotics such as aspirin (2.0% to 21.4%), heparin (2.2% to 18.1%), and enoxaparin (2.8% to 14.8%). Hospitalization was observed in 0.3% to 1.3% of the COVID-19 diagnosed cohort, with undetectable (N<5 per database) 30-day fatality. Thirty-day outcomes including pneumonia, ARDS, and MIS-C were more frequent in COVID-19 than influenza. ConclusionsDespite negligible fatality, complications including pneumonia, ARDS and MIS-C were more frequent in children/adolescents with COVID-19 than with influenza. Dyspnea, anosmia and gastrointestinal symptoms could help differential diagnosis. A wide range of medications were used for the inpatient management of pediatric COVID-19. What is already known on this topic?O_LIMost of the early COVID-19 studies were targeted at adult patients, and data concerning children and adolescents are limited. C_LIO_LIClinical manifestations of COVID-19 are generally milder in the pediatric population compared with adults. C_LIO_LIHospitalization for COVID-19 affects mostly infants, toddlers, and children with pre-existing comorbidities. C_LI What this study adds This study comprehensively characterizes a large international cohort of pediatric COVID-19 patients, and almost 2 million with previous seasonal influenza across 5 countries. Although uncommon, pneumonia, acute respiratory distress syndrome (ARDS) and multi-system inflammatory syndrome (MIS-C) were more frequent in children and adolescents diagnosed with COVID-19 than in those with seasonal influenza. Dyspnea, bronchiolitis, anosmia and gastrointestinal symptoms were more frequent in COVID-19, and could help to differentiate pediatric COVID-19 from influenza. A plethora of medications were used during the management of COVID-19 in children and adolescents, with great heterogeneity in the use of antiviral therapies as well as of adjunctive therapies.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20185173

ABSTRACT

BackgroundCOVID-19 may differentially impact people with obesity. We aimed to describe and compare the demographics, comorbidities, and outcomes of obese patients with COVID-19 to those of non-obese patients with COVID-19, or obese patients with seasonal influenza. MethodsWe conducted a cohort study based on outpatient/inpatient care, and claims data from January to June 2020 from the US, Spain, and the UK. We used six databases standardized to the OMOP common data model. We defined two cohorts of patients diagnosed and/or hospitalized with COVID-19. We created corresponding cohorts for patients with influenza in 2017-2018. We followed patients from index date to 30 days or death. We report the frequency of socio-demographics, prior comorbidities, and 30-days outcomes (hospitalization, events, and death) by obesity status. FindingsWe included 627 044 COVID-19 (US: 502 650, Spain: 122 058, UK: 2336) and 4 549 568 influenza (US: 4 431 801, Spain: 115 224, UK: 2543) patients. The prevalence of obesity was higher among hospitalized COVID-19 (range: 38% to 54%) than diagnosed COVID-19 (30% to 47%), or diagnosed (15% to 47%) or hospitalized (27% to 48%) influenza patients. Obese hospitalized COVID-19 patients were more often female and younger than non-obese COVID-19 patients or obese influenza patients. Obese COVID-19 patients were more likely to have prior comorbidities, present with cardiovascular and respiratory events during hospitalization, require intensive services, or die compared to non-obese COVID-19 patients. Obese COVID-19 patients were more likely to require intensive services or die compared to obese influenza patients, despite presenting with fewer comorbidities. InterpretationWe show that obesity is more common amongst COVID-19 than influenza patients, and that obese patients present with more severe forms of COVID-19 with higher hospitalization, intensive services, and fatality than non-obese patients. These data are instrumental for guiding preventive strategies of COVID-19 infection and complications. FundingThe European Health Data & Evidence Network has received funding from the Innovative Medicines Initiative 2 Joint Undertaking (JU) under grant agreement No 806968. The JU receives support from the European Unions Horizon 2020 research and innovation programme and EFPIA. This research received partial support from the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), US National Institutes of Health, US Department of Veterans Affairs, Janssen Research & Development, and IQVIA. The University of Oxford received funding related to this work from the Bill & Melinda Gates Foundation (Investment ID INV-016201 and INV-019257). APU has received funding from the Medical Research Council (MRC) [MR/K501256/1, MR/N013468/1] and Fundacion Alfonso Martin Escudero (FAME) (APU). VINCI [VA HSR RES 13-457] (SLD, MEM, KEL). JCEL has received funding from the Medical Research Council (MR/K501256/1) and Versus Arthritis (21605). No funders had a direct role in this study. The views and opinions expressed are those of the authors and do not necessarily reflect those of the Clinician Scientist Award programme, NIHR, Department of Veterans Affairs or the United States Government, NHS, or the Department of Health, England. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSPrevious evidence suggests that obese individuals are a high risk population for COVID-19 infection and complications. We searched PubMed for articles published from December 2019 until June 2020, using terms referring to SARS-CoV-2 or COVID-19 combined with terms for obesity. Few studies reported obesity and most of them were limited by small sample sizes and restricted to hospitalized patients. Further, they used different definitions for obesity (i.e. some reported together overweight and obesity, others only reported obesity with BMI>40kg/m2). To date, no study has provided detailed information on the characteristics of obese COVID-19 patients, such as the prevalence of comorbidities or COVID-19 related outcomes. In addition, despite the fact that COVID-19 has been often compared to seasonal influenza, there are no studies assessing whether obese patients with COVID-19 differ from obese patients with seasonal influenza. Added value of this studyWe report the largest cohort of obese patients with COVID-19 and provide information on more than 29 000 aggregate characteristics publicly available. Our findings were consistent across the participating databases and countries. We found that the prevalence of obesity is higher among COVID-19 compared to seasonal influenza patients. Obese patients with COVID-19 are more commonly female and have worse outcomes than non-obese patients. Further, they have worse outcomes than obese patients with influenza, despite presenting with fewer comorbidities. Implications of all the available evidenceOur results show that individuals with obesity present more comorbidities and worse outcomes for COVID-19 than non-obese patients. These findings may be useful in guiding clinical practice and future preventative strategies for obese individuals, as well as provide useful data to support subsequent association studies focussed on obesity and COVID-19.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-20130328

ABSTRACT

BackgroundSARS-CoV-2 is straining healthcare systems globally. The burden on hospitals during the pandemic could be reduced by implementing prediction models that can discriminate between patients requiring hospitalization and those who do not. The COVID-19 vulnerability (C-19) index, a model that predicts which patients will be admitted to hospital for treatment of pneumonia or pneumonia proxies, has been developed and proposed as a valuable tool for decision making during the pandemic. However, the model is at high risk of bias according to the Prediction model Risk Of Bias ASsessment Tool and has not been externally validated. MethodsWe followed the OHDSI framework for external validation to assess the reliability of the C-19 model. We evaluated the model on two different target populations: i) 41,381 patients that have SARS-CoV-2 at an outpatient or emergency room visit and ii) 9,429,285 patients that have influenza or related symptoms during an outpatient or emergency room visit, to predict their risk of hospitalization with pneumonia during the following 0 to 30 days. In total we validated the model across a network of 14 databases spanning the US, Europe, Australia and Asia. FindingsThe internal validation performance of the C-19 index was a c-statistic of 0.73 and calibration was not reported by the authors. When we externally validated it by transporting it to SARS-CoV-2 data the model obtained c-statistics of 0.36, 0.53 (0.473-0.584) and 0.56 (0.488-0.636) on Spanish, US and South Korean datasets respectively. The calibration was poor with the model under-estimating risk. When validated on 12 datasets containing influenza patients across the OHDSI network the c-statistics ranged between 0.40-0.68. InterpretationThe results show that the discriminative performance of the C-19 model is low for influenza cohorts, and even worse amongst COVID-19 patients in the US, Spain and South Korea. These results suggest that C-19 should not be used to aid decision making during the COVID-19 pandemic. Our findings highlight the importance of performing external validation across a range of settings, especially when a prediction model is being extrapolated to a different population. In the field of prediction, extensive validation is required to create appropriate trust in a model.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-20112649

ABSTRACT

ObjectiveTo develop and externally validate COVID-19 Estimated Risk (COVER) scores that quantify a patients risk of hospital admission (COVER-H), requiring intensive services (COVER-I), or fatality (COVER-F) in the 30-days following COVID-19 diagnosis. MethodsWe analyzed a federated network of electronic medical records and administrative claims data from 14 data sources and 6 countries. We developed and validated 3 scores using 6,869,127 patients with a general practice, emergency room, or outpatient visit with diagnosed influenza or flu-like symptoms any time prior to 2020. The scores were validated on patients with confirmed or suspected COVID-19 diagnosis across five databases from South Korea, Spain and the United States. Outcomes included i) hospitalization with pneumonia, ii) hospitalization with pneumonia requiring intensive services or death iii) death in the 30 days after index date. ResultsOverall, 44,507 COVID-19 patients were included for model validation. We identified 7 predictors (history of cancer, chronic obstructive pulmonary disease, diabetes, heart disease, hypertension, hyperlipidemia, kidney disease) which combined with age and sex discriminated which patients would experience any of our three outcomes. The models achieved high performance in influenza. When transported to COVID-19 cohorts, the AUC ranges were, COVER-H: 0.69-0.81, COVER-I: 0.73-0.91, and COVER-F: 0.72-0.90. Calibration was overall acceptable. ConclusionsA 9-predictor model performs well for COVID-19 patients for predicting hospitalization, intensive services and fatality. The models could aid in providing reassurance for low risk patients and shield high risk patients from COVID-19 during de-confinement to reduce the virus impact on morbidity and mortality.

SELECTION OF CITATIONS
SEARCH DETAIL
...