Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 100(8): 4678-83, 2003 Apr 15.
Article in English | MEDLINE | ID: mdl-12682299

ABSTRACT

To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximately 4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related to cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from bacteria with small genomes. Unexpectedly, most genes involved in the Embden-Meyerhof-Parnas pathway are essential. Identification of unknown and unexpected essential genes opens research avenues to better understanding of processes that sustain bacterial life.


Subject(s)
Bacillus subtilis/genetics , Genes, Bacterial , Bacillus subtilis/cytology , Bacillus subtilis/metabolism , Cell Division/genetics , Cell Membrane/genetics , Coenzymes/genetics , Coenzymes/metabolism , Energy Metabolism/genetics , Genome, Bacterial , Mutation , Nucleotides/genetics , Nucleotides/metabolism , Phylogeny
2.
J Bacteriol ; 179(8): 2540-50, 1997 Apr.
Article in English | MEDLINE | ID: mdl-9098051

ABSTRACT

The xpt and pbuX genes from Bacillus subtilis were cloned, and their nucleotide sequences were determined. The xpt gene encodes a specific xanthine phosphoribosyltransferase, and the pbuX gene encodes a xanthine-specific purine permease. The genes have overlapping coding regions, and Northern (RNA) blot analysis indicated an operon organization. The translation of the second gene, pbuX, was strongly dependent on the translation of the first gene, xpt. Expression of the operon was repressed by purines, and the effector molecules appear to be hypoxanthine and guanine. When hypoxanthine and guanine were added together, a 160-fold repression was observed. The regulation of expression was at the level of transcription, and we propose that a transcription termination-antitermination control mechanism similar to the one suggested for the regulation of the purine biosynthesis operon exists. The expression of the xpt-pbuX operon was reduced when hypoxanthine served as the sole nitrogen source. Under these conditions, the level of the hypoxanthine- and xanthine-degrading enzyme, xanthine dehydrogenase, was induced more than 80-fold. The xanthine dehydrogenase level was completely derepressed in a glnA (glutamine synthetase) genetic background. Although the regulation of the expression of the xpt-pbuX operon was found to be affected by the nitrogen source, it was normal in a glnA mutant strain. This result suggests the existence of different signalling pathways for repression of the transcription of the xpt-pbuX operon and the induction of xanthine dehydrogenase.


Subject(s)
Bacillus subtilis/genetics , Bacterial Proteins , Gene Expression Regulation, Bacterial/physiology , Operon/genetics , Xanthines/metabolism , Amino Acid Sequence , Bacillus subtilis/enzymology , Base Sequence , Cloning, Molecular , Gene Expression Regulation, Bacterial/drug effects , Genes, Bacterial , Glutamate-Ammonia Ligase/metabolism , Membrane Transport Proteins/genetics , Molecular Sequence Data , Nitrogen/pharmacology , Nucleic Acid Conformation , Pentosyltransferases/genetics , Pentosyltransferases/metabolism , Protein Biosynthesis/genetics , Purines/metabolism , Purines/pharmacology , RNA, Bacterial/analysis , RNA, Bacterial/chemistry , RNA, Messenger/analysis , RNA, Messenger/chemistry , Recombinant Fusion Proteins , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Transcription, Genetic/genetics , Xanthine
SELECTION OF CITATIONS
SEARCH DETAIL