Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Neurol ; 95(5): 907-916, 2024 May.
Article in English | MEDLINE | ID: mdl-38345145

ABSTRACT

OBJECTIVE: Microglia/macrophages line the border of demyelinated lesions in both cerebral white matter and the cortex in the brains of multiple sclerosis patients. Microglia/macrophages associated with chronic white matter lesions are thought to be responsible for slow lesion expansion and disability progression in progressive multiple sclerosis, whereas those lining gray matter lesions are less studied. Profiling these microglia/macrophages could help to focus therapies on genes or pathways specific to lesion expansion and disease progression. METHODS: We compared the morphology and transcript profiles of microglia/macrophages associated with borders of white matter (WM line) and subpial gray matter lesions (GM line) using laser capture microscopy. We performed RNA sequencing on isolated cells followed by immunocytochemistry to determine the distribution of translational products of transcripts increased in WM line microglia. RESULTS: Cells in the WM line appear activated, with shorter processes and larger cell bodies, whereas those in the GM line appear more homeostatic, with smaller cell bodies and multiple thin processes. Transcript profiling revealed 176 genes in WM lines and 111 genes in GM lines as differentially expressed. Transcripts associated with immune activation and iron homeostasis were increased in WM line microglia, whereas genes belonging to the canonical Wnt signaling pathway were increased in GM line microglia. INTERPRETATION: We propose that the mechanisms of demyelination and dynamics of lesion expansion are responsible for differential transcript expression in WM lines and GM lines, and posit that increased expression of the Fc epsilon receptor, spleen tyrosine kinase, and Bruton's tyrosine kinase, play a key role in regulating microglia/macrophage function at the border of chronic active white matter lesions. ANN NEUROL 2024;95:907-916.


Subject(s)
Gray Matter , Macrophages , Microglia , Multiple Sclerosis , White Matter , Humans , Microglia/metabolism , Microglia/pathology , Macrophages/metabolism , Macrophages/pathology , Gray Matter/pathology , Gray Matter/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Male , Female , White Matter/pathology , White Matter/metabolism , Middle Aged , Transcriptome , Adult , Aged
2.
J Vis Exp ; (149)2019 07 19.
Article in English | MEDLINE | ID: mdl-31380830

ABSTRACT

We describe a rapid tissue donation program for individuals with multiple sclerosis (MS) that requires scientists and technicians to be on-call 24/7, 365 days a year. Participants consent to donate their brain and spinal cord. Most patients were followed by neurologists at the Cleveland Clinic Mellen Center for MS Treatment and Research. Their clinical courses and neurological disabilities are well-characterized. Soon after death, the body is transported to the MS Imaging Center, where the brain is scanned in situ by 3 T magnetic resonance imaging (MRI). The body is then transferred to the autopsy room, where the brain and spinal cord are removed. The brain is divided into two hemispheres. One hemisphere is immediately placed in a slicing box and alternate 1 cm-thick slices are either fixed in 4% paraformaldehyde for two days or rapidly frozen in dry ice and 2-methylbutane. The short-fixed brain slices are stored in a cryopreservation solution and used for histological analyses and immunocytochemical detection of sensitive antigens. Frozen slices are stored at -80 °C and used for molecular, immunocytochemical, and in situ hybridization/RNA scope studies. The other hemisphere is placed in 4% paraformaldehyde for several months, placed in the slicing box, re-scanned in the 3 T magnetic resonance (MR) scanner and sliced into centimeter-thick slices. Postmortem in situ MR images (MRIs) are co-registered with 1 cm-thick brain slices to facilitate MRI-pathology correlations. All brain slices are photographed and brain white-matter lesions are identified. The spinal cord is cut into 2 cm segments. Alternate segments are fixed in 4% paraformaldehyde or rapidly frozen. The rapid procurement of postmortem MS tissues allows pathological and molecular analyses of MS brains and spinal cords and pathological correlations of brain MRI abnormalities. The quality of these rapidly-processed postmortem tissues (usually within 6 h of death) is of great value to MS research and has resulted in many high-impact discoveries.


Subject(s)
Autopsy/methods , Multiple Sclerosis/pathology , Brain/pathology , Humans , Magnetic Resonance Imaging/methods , Spinal Cord/pathology , White Matter/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...