Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2403885, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739417

ABSTRACT

Low-melting liquid metals are emerging as a new group of highly functional solvents due to their capability to dissolve and alloy various metals in their elemental state to form solutions as well as colloidal systems. Furthermore, these liquid metals can facilitate and catalyze multiple unique chemical reactions. Despite the intriguing science behind liquid metals and alloys, very little is known about their fundamental structures in the nanometric regime. To bridge this gap, this work employs small angle neutron scattering and molecular dynamics simulations, revealing that the most commonly used liquid metal solvents, EGaIn and Galinstan, are surprisingly structured with the formation of clusters ranging from 157 to 15.7 Å. Conversely, noneutectic liquid metal alloys of GaSn or GaIn at low solute concentrations of 1, 2, and 5 wt%, as well as pure Ga, do not exhibit these structures. Importantly, the eutectic alloys retain their structure even at elevated temperatures of 60 and 90 °C, highlighting that they are not just simple homogeneous fluids consisting of individual atoms. Understanding the complex soft structure of liquid alloys will assist in comprehending complex phenomena occurring within these fluids and contribute to deriving reaction mechanisms in the realm of synthesis and liquid metal-based catalysis.

2.
Adv Sci (Weinh) ; : e2400147, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704677

ABSTRACT

Crystallization of alloys from a molten state is a fundamental process underpinning metallurgy. Here the direct imaging of an intermetallic precipitation reaction at equilibrium in a liquid-metal environment is demonstrated. It is shown that the outer layers of a solidified intermetallic are surprisingly unstable to the depths of several nanometers, fluctuating between a crystalline and a liquid state. This effect, referred to herein as crystal interface liquefaction, is observed at remarkably low temperatures and results in highly unstable crystal interfaces at temperatures exceeding 200 K below the bulk melting point of the solid. In general, any liquefaction process would occur at or close to the formal melting point of a solid, thus differentiating the observed liquefaction phenomenon from other processes such as surface pre-melting or conventional bulk melting. Crystal interface liquefaction is observed in a variety of binary alloy systems and as such, the findings may impact the understanding of crystallization and solidification processes in metallic systems and alloys more generally.

3.
Dalton Trans ; 53(19): 8478-8493, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38687288

ABSTRACT

A series of nine luminescent iridium(III) complexes with pH-responsive imidazole and benzimidazole ligands have been prepared and characterized. The first series of complexes were of the form [Ir(ppy)2(N^N)]+ or [Ir(ppy)2(C^N)]+ (where ppy is 2-phenylpyridine and N^N is 2-(2-pyridyl)imidazole or 2-(2-pyridyl)benzimidazole and C^N represents a pyridyl-triazolylidene-based N-heterocyclic carbene ligand). For these complexes, the benzimidazole group was either unsubstituted or substituted with electron-withdrawing (Cl) or electron-donating (Me) groups. The second series of complexes were of the form [Ir(phbim)2(N^N)]+ or [Ir(phbim)2(C^N)]+ (where phbim is 2-phenylbenzimidazole and N^N is either 2,2'-bipyridine or 1,10-phenanthroline and C^N is either a pyridyl-imidazolylidene or pyridyl-triazolylidene N-heterocyclic carbene ligand). UV-visible and photoluminescence pH titration studies showed that changing the protonation state of these complexes results in significant changes in the photoluminescence emission properties. The pKa values of prepared complexes were estimated from the spectroscopic pH titration data and these values show that the nature of the pH-sensitive ligands (either main or ancillary ligands) resulted in a significant capacity to modulate the pKa values for these compounds with values ranging from 5.19-11.22. Theoretical investigations into the nature of the electronic transitions for the different protonation states of compounds were performed and the results were consistent with the experimental results.

4.
Small ; : e2309924, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263808

ABSTRACT

The emergence of ferroelectricity in two-dimensional (2D) metal oxides is a topic of significant technological interest; however, many 2D metal oxides lack intrinsic ferroelectric properties. Therefore, introducing asymmetry provides access to a broader range of 2D materials within the ferroelectric family. Here, the generation of asymmetry in 2D SnO by doping the material with Hf0.5 Zr0.5 O2 (HZO) is demonstrated. A liquid metal process as a doping strategy for the preparation of 2D HZO-doped SnO with robust ferroelectric characteristics is implemented. This technology takes advantage of the selective interface enrichment of molten Sn with HZO crystallites. Molecular dynamics simulations indicate a strong tendency of Hf and Zr atoms to migrate toward the surface of liquid metal and embed themselves within the growing oxide layer in the form of HZO. Thus, the liquid metal-based harvesting/doping technique is a feasible approach devised for producing novel 2D metal oxides with induced ferroelectric properties, represents a significant development for the prospects of random-access memories.

5.
Nat Nanotechnol ; 19(3): 306-310, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37945988

ABSTRACT

The use of liquid gallium as a solvent for catalytic reactions has enabled access to well-dispersed metal atoms configurations, leading to unique catalytic phenomena, including activation of neighbouring liquid atoms and mobility-induced activity enhancement. To gain mechanistic insights into liquid metal catalysts, here we introduce a GaSn0.029Ni0.023 liquid alloy for selective propylene synthesis from decane. Owing to their mobility, dispersed atoms in a Ga matrix generate configurations where interfacial Sn and Ni atoms allow for critical alignments of reactants and intermediates. Computational modelling, corroborated by experimental analyses, suggests a particular reaction mechanism by which Sn protrudes from the interface and an adjacent Ni, below the interfacial layer, aligns precisely with a decane molecule, facilitating propylene production. We then apply this reaction pathway to canola oil, attaining a propylene selectivity of ~94.5%. Our results offer a mechanistic interpretation of liquid metal catalysts with an eye to potential practical applications of this technology.

6.
ACS Nano ; 17(9): 8083-8097, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37093765

ABSTRACT

Few-layer black phosphorus (FLBP), a technologically important 2D material, faces a major hurdle to consumer applications: spontaneous degradation under ambient conditions. Blocking the direct exposure of FLBP to the environment has remained the key strategy to enhance its stability, but this can also limit its utility. In this paper, a more ambitious approach to handling FLBP is reported where not only is FLBP oxidation blocked, but it is also repaired postoxidation. Our approach, inspired by nature, employs the antioxidant molecule ß-carotene that protects plants against photooxidative damages to act as a protecting and repairing agent for FLBP. The mechanistic role of ß-carotene is established by a suite of spectro-microscopy techniques, in combination with computational studies and biochemical assays. Transconductance studies on FLBP-based field effect transistor (FET) devices further affirm the protective and reparative effects of ß-carotene. The outcomes indicate the potential for deploying a plethora of natural antioxidant molecules to enhance the stability of other environmentally sensitive inorganic nanomaterials and expedite their translation for technological and consumer applications.


Subject(s)
Antioxidants , beta Carotene , beta Carotene/chemistry , Antioxidants/pharmacology , Phosphorus/chemistry , Oxidation-Reduction
7.
Int J Mol Sci ; 24(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36983061

ABSTRACT

Escherichia coli NfsB has been studied extensively for its potential for cancer gene therapy by reducing the prodrug CB1954 to a cytotoxic derivative. We have previously made several mutants with enhanced activity for the prodrug and characterised their activity in vitro and in vivo. Here, we determine the X-ray structure of our most active triple and double mutants to date, T41Q/N71S/F124T and T41L/N71S. The two mutant proteins have lower redox potentials than wild-type NfsB, and the mutations have lowered activity with NADH so that, in contrast to the wild-type enzyme, the reduction of the enzyme by NADH, rather than the reaction with CB1954, has a slower maximum rate. The structure of the triple mutant shows the interaction between Q41 and T124, explaining the synergy between these two mutations. Based on these structures, we selected mutants with even higher activity. The most active one contains T41Q/N71S/F124T/M127V, in which the additional M127V mutation enlarges a small channel to the active site. Molecular dynamics simulations show that the mutations or reduction of the FMN cofactors of the protein has little effect on its dynamics and that the largest backbone fluctuations occur at residues that flank the active site, contributing towards its broad substrate range.


Subject(s)
Escherichia coli Proteins , Neoplasms , Prodrugs , Humans , Escherichia coli/metabolism , Prodrugs/chemistry , NAD , Neoplasms/drug therapy , Oxidoreductases , Nitroreductases/metabolism , Escherichia coli Proteins/genetics
8.
Adv Mater ; 35(19): e2212069, 2023 May.
Article in English | MEDLINE | ID: mdl-36840977

ABSTRACT

Although sonodynamic therapy (SDT) has shown promise for cancer treatment, the lack of efficient sonosensitizers (SSs) has limited the clinical application of SDT. Here, a new strategy is reported for designing efficient nano-sonosensitizers based on 2D nanoscale metal-organic layers (MOLs). Composed of Hf-oxo secondary building units (SBUs) and iridium-based linkers, the MOL is anchored with 5,10,15,20-tetra(p-benzoato)porphyrin (TBP) sensitizers on the SBUs to afford TBP@MOL. TBP@MOL shows 14.1- and 7.4-fold higher singlet oxygen (1 O2 ) generation than free TBP ligands and Hf-TBP, a 3D nanoscale metal-organic framework, respectively. The 1 O2 generation of TBP@MOL is enhanced by isolating TBP SSs on the SBUs of the MOL, which prevents aggregation-induced quenching of the excited sensitizers, and by triplet-triplet Dexter energy transfer between excited iridium-based linkers and TBP SSs, which more efficiently harnesses broad-spectrum sonoluminescence. Anchoring TBP on the MOL surface also enhances the energy transfer between the excited sensitizer and ground-state triplet oxygen to increase 1 O2 generation efficacy. In mouse models of colorectal and breast cancer, TBP@MOL demonstrates significantly higher SDT efficacy than Hf-TBP and TBP. This work uncovers a new strategy to design effective nano-sonosensitizers by facilitating energy transfer to efficiently capture broad-spectrum sonoluminescence and enhance 1 O2 generation.


Subject(s)
Neoplasms , Porphyrins , Ultrasonic Therapy , Mice , Animals , Iridium , Porphyrins/pharmacology , Singlet Oxygen , Oxygen , Neoplasms/drug therapy
9.
ACS Nano ; 16(10): 17179-17196, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36121776

ABSTRACT

Nanomaterials have the potential to transform biological and biomedical research, with applications ranging from drug delivery and diagnostics to targeted interference of specific biological processes. Most existing research is aimed at developing nanomaterials for specific tasks such as enhanced biocellular internalization. However, fundamental aspects of the interactions between nanomaterials and biological systems, in particular, membranes, remain poorly understood. In this study, we provide detailed insights into the molecular mechanisms governing the interaction and evolution of one of the most common synthetic nanomaterials in contact with model phospholipid membranes. Using a combination of atomic force microscopy (AFM) and molecular dynamics (MD) simulations, we elucidate the precise mechanisms by which citrate-capped 5 nm gold nanoparticles (AuNPs) interact with supported lipid bilayers (SLBs) of pure fluid (DOPC) and pure gel-phase (DPPC) phospholipids. On fluid-phase DOPC membranes, the AuNPs adsorb and are progressively internalized as the citrate capping of the NPs is displaced by the surrounding lipids. AuNPs also interact with gel-phase DPPC membranes where they partially embed into the outer leaflet, locally disturbing the lipid organization. In both systems, the AuNPs cause holistic perturbations throughout the bilayers. AFM shows that the lateral diffusion of the particles is several orders of magnitude smaller than that of the lipid molecules, which creates some temporary scarring of the membrane surface. Our results reveal how functionalized AuNPs interact with differing biological membranes with mechanisms that could also have implications for cooperative membrane effects with other molecules.


Subject(s)
Gold , Metal Nanoparticles , Lipid Bilayers , Citric Acid , Phospholipids , Microscopy, Atomic Force
10.
J Phys Chem B ; 126(33): 6231-6239, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35976055

ABSTRACT

Mixtures of short-chain alcohols and water produce anomalous thermodynamic and structural quantities, including molecular segregation into water-rich and alcohol-rich components. Herein, we used molecular dynamics simulations with polarizable models to investigate interactions that could drive the self-association of water molecules in mixtures with methanol (MeOH). As water was diluted with MeOH, significant changes in the distribution of molecules and solvation properties occurred, where water exhibited a clear preference for self-association. When common structural quantities were analyzed, it was found that there was a clear reduction in water-water hydrogen bonding and tetrahedral order (both in terms of typical bulk behavior), contrary to the observed water self-association. However, when dipolar dispersion forces between all molecules as a function of system composition were analyzed, it was found that water-water dipolar interactions became significantly stronger with dilution (6-fold stronger interaction in 75% MeOH compared to 0% MeOH). This was only observed for water, where MeOH-MeOH interactions became weaker as the systems were more dilute in MeOH. These forces result from specific dipole orientations, likely occurring to adopt lower energy configurations (i.e., head-to-tail or antiparallel). For water, this may result from lost other interactions (e.g., hydrogen bonding), leading to more rotational freedom between the dipole moments. These intriguing changes in dipolar interactions, which directly result from structural changes, can therefore explain, in part, the driving force for water self-association in MeOH-water mixtures.


Subject(s)
Methanol , Water , Alcohols , Hydrogen Bonding , Methanol/chemistry , Molecular Dynamics Simulation , Thermodynamics , Water/chemistry
11.
FEBS Lett ; 596(18): 2425-2440, 2022 09.
Article in English | MEDLINE | ID: mdl-35648111

ABSTRACT

Nitroreductases activate nitroaromatic antibiotics and cancer prodrugs to cytotoxic hydroxylamines and reduce quinones to quinols. Using steady-state and stopped-flow kinetics, we show that the Escherichia coli nitroreductase NfsA is 20-50 fold more active with NADPH than with NADH and that product release may be rate-limiting. The crystal structure of NfsA with NADP+ shows that a mobile loop forms a phosphate-binding pocket. The nicotinamide ring and nicotinamide ribose are mobile, as confirmed in molecular dynamics (MD) simulations. We present a model of NADPH bound to NfsA. Only one NADP+ is seen bound to the NfsA dimers, and MD simulations show that binding of a second NADP(H) cofactor is unfavourable, suggesting that NfsA and other members of this protein superfamily may have a half-of-sites mechanism.


Subject(s)
Escherichia coli Proteins , Prodrugs , Anti-Bacterial Agents , Escherichia coli/genetics , Escherichia coli/metabolism , Hydroquinones , Hydroxylamines , Kinetics , NAD/metabolism , NADP/metabolism , Niacinamide , Nitroreductases/chemistry , Nitroreductases/metabolism , Phosphates , Prodrugs/chemistry , Prodrugs/metabolism , Quinones
12.
J Mater Chem B ; 10(24): 4546-4560, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35670530

ABSTRACT

Cryopreservation has facilitated numerous breakthroughs including assisted reproductive technology, stem cell therapies, and species preservation. Successful cryopreservation requires the addition of cryoprotective agents to protect against freezing damage and dehydration. For decades, cryopreservation has largely relied on the same two primary agents: dimethylsulfoxide and glycerol. However, both of these are toxic which limits their use for cells destined for clinical applications. Furthermore, these two agents are ineffective for hundreds of cell types, and organ and tissue preservation has not been achieved. The research presented here shows that deep eutectic solvents can be used as cryoprotectants. Six deep eutectic solvents were explored for their cryoprotective capacity towards mammalian cells. The solvents were tested for their thermal properties, including glass transitions, toxicity, and permeability into mammalian cells. A deep eutectic solvent made from proline and glycerol was an effective cryoprotective agent for all four cell types tested, even with extended incubation prior to freezing. This deep eutectic solvent was more effective and less toxic than its individual components, highlighting the importance of multi-component systems. Cells were characterised post-thawing using atomic force microscopy and confocal microscopy. Molecular dynamics simulations support the biophysical parameters obtained by experimentation. This is one of the first times that this class of solvents has been systematically tested for cryopreservation of mammalian cells and as such this research opens the way for the development of potentially thousands of new cryoprotective agents that can be tailored to specific cell types. The demonstrated capacity of cells to be incubated with the deep eutectic solvent at 37 °C for hours prior to freezing without significant loss of viability is a major step toward the storage of organs and tissues.


Subject(s)
Cryoprotective Agents , Deep Eutectic Solvents , Animals , Cryopreservation , Cryoprotective Agents/pharmacology , Glycerol/pharmacology , Mammals , Solvents
13.
Nat Chem ; 14(8): 935-941, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35668212

ABSTRACT

Insights into metal-matrix interactions in atomically dispersed catalytic systems are necessary to exploit the true catalytic activity of isolated metal atoms. Distinct from catalytic atoms spatially separated but immobile in a solid matrix, here we demonstrate that a trace amount of platinum naturally dissolved in liquid gallium can drive a range of catalytic reactions with enhanced kinetics at low temperature (318 to 343 K). Molecular simulations provide evidence that the platinum atoms remain in a liquid state in the gallium matrix without atomic segregation and activate the surrounding gallium atoms for catalysis. When used for electrochemical methanol oxidation, the surface platinum atoms in the gallium-platinum system exhibit an activity of [Formula: see text] three orders of magnitude higher than existing solid platinum catalysts. Such a liquid catalyst system, with a dynamic interface, sets a foundation for future exploration of high-throughput catalysis.

14.
J Chem Phys ; 156(15): 154503, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35459305

ABSTRACT

Ionic liquids (ILs) are well classified as designer solvents based on the ease of tailoring their properties through modifying the chemical structure of the cation and anion. However, while many structure-property relationships have been developed, these generally only identify the most dominant trends. Here, we have used machine learning on existing experimental data to construct robust models to produce meaningful predictions across a broad range of cation and anion chemical structures. Specifically, we used previously collated experimental data for the viscosity and conductivity of protic ILs [T. L. Greaves and C. J. Drummond, Chem. Rev. 115, 11379-11448 (2015)] as the inputs for multiple linear regression and neural network models. These were then used to predict the properties of all 1827 possible cation-anion combinations (excluding the input combinations). These models included the effect of water content of up to 5 wt. %. A selection of ten new protic ILs was then prepared, which validated the usefulness of the models. Overall, this work shows that relatively sparse data can be used productively to predict physicochemical properties of vast arrays of ILs.


Subject(s)
Ionic Liquids , Anions , Cations , Ionic Liquids/chemistry , Machine Learning , Viscosity , Water/chemistry
15.
Langmuir ; 38(15): 4633-4644, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35377655

ABSTRACT

Ionic liquids are versatile solvents that can be tailored through modification of the cation and anion species. Relatively little is known about the corrosive properties of protic ionic liquids. In this study, we have explored the corrosion of both zinc and copper within a series of protic ionic liquids consisting of alkylammonium or alkanolammonium cations paired with nitrate or carboxylate anions along with three aprotic imidazolium ionic liquids for comparison. Electrochemical studies revealed that the presence of either carboxylate anions or alkanolammonium cations tend to induce a cathodic shift in the corrosion potential. The effect in copper was similar in magnitude for both cations and anions, while the anion effect was slightly more pronounced than that of the cation in the case of zinc. For copper, the presence of carboxylate anions or alkanolammonium cations led to a notable decrease in corrosion current, whereas an increase was typically observed for zinc. The ionic liquid-metal surface interactions were further explored for select protic ionic liquids on copper using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to characterize the interface. From these studies, the oxide species formed on the surface were identified, and copper speciation at the surface linked to ionic liquid and potential dependent surface passivation. Density functional theory and ab initio molecular dynamics simulations revealed that the ethanolammonium cation was more strongly bound to the copper surface than the ethylammonium counterpart. In addition, the nitrate anion was more tightly bound than the formate anion. These likely lead to competing effects on the process of corrosion: the tightly bound cations act as a source of passivation, whereas the tightly bound anions facilitate the electrodissolution of the copper.

16.
Nat Commun ; 13(1): 1249, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273166

ABSTRACT

Catalytic solvent regeneration has attracted broad interest owing to its potential to reduce energy consumption in CO2 separation, enabling industry to achieve emission reduction targets of the Paris Climate Accord. Despite recent advances, the development of engineered acidic nanocatalysts with unique characteristics remains a challenge. Herein, we establish a strategy to tailor the physicochemical properties of metal-organic frameworks (MOFs) for the synthesis of water-dispersible core-shell nanocatalysts with ease of use. We demonstrate that functionalized nanoclusters (Fe3O4-COOH) effectively induce missing-linker deficiencies and fabricate mesoporosity during the self-assembly of MOFs. Superacid sites are created by introducing chelating sulfates on the uncoordinated metal clusters, providing high proton donation capability. The obtained nanomaterials drastically reduce the energy consumption of CO2 capture by 44.7% using only 0.1 wt.% nanocatalyst, which is a ∽10-fold improvement in efficiency compared to heterogeneous catalysts. This research represents a new avenue for the next generation of advanced nanomaterials in catalytic solvent regeneration.


Subject(s)
Metal-Organic Frameworks , Nanostructures , Carbon Dioxide/chemistry , Catalysis , Metal-Organic Frameworks/chemistry , Water
17.
J Mater Chem B ; 10(37): 7527-7539, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35024716

ABSTRACT

In the fight against drug-resistant pathogenic bacterial and fungal cells, low-dimensional materials are emerging as a promising alternative treatment method. Specifically, few-layer black phosphorus (BP) has demonstrated its effectiveness against a wide range of pathogenic bacterial and fungal cells with studies suggesting low cytotoxicity towards healthy mammalian cells. However, the antimicrobial mechanism of action of BP is not well understood. Before new applications for this material can be realised, further in-depth investigations are required. In this work, the biochemical interaction between BP and a series of microbial cells is investigated using a variety of microscopy and spectroscopy techniques to provide a greater understanding of the antimicrobial mechanism. Synchrotron macro-attenuated total reflection-Fourier transform infrared (ATR-FTIR) micro-spectroscopy is used to elucidate the chemical changes occurring outside and within the cell of interest after exposure to BP nanoflakes. The ATR-FTIR data, coupled with high-resolution microscopy, reveals major physical and bio-chemical changes to the phospholipids and amide I and II proteins, as well as minor chemical changes to the structural polysaccharides and nucleic acids when compared to untreated cells. These changes can be attributed to the physical interaction of the BP nanoflakes with the cell membranes, combined with the oxidative stress induced by the degradation of the BP nanoflakes. This study provides insight into the biochemical interaction of BP nanoflakes with microbial cells, allowing for a better understanding of the antimicrobial mechanism of action that will be important for the next generation of applications such as implant coatings, wound dressings, or medical surfaces.


Subject(s)
Anti-Infective Agents , Nucleic Acids , Amides , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Fourier Analysis , Mammals , Phosphorus , Spectroscopy, Fourier Transform Infrared/methods , Synchrotrons
18.
J Colloid Interface Sci ; 608(Pt 3): 2430-2454, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34785053

ABSTRACT

Deep eutectic solvents (DESs) are a tailorable class of solvents that are rapidly gaining scientific and industrial interest. This is because they are distinct from conventional molecular solvents, inherently tuneable via careful selection of constituents, and possess many attractive properties for applications, including catalysis, chemical extraction, reaction media, novel lubricants, materials chemistry, and electrochemistry. DESs are a class of solvents composed solely of hydrogen bond donors and acceptors with a melting point lower than the individual components and are often fluidic at room temperature. A unique feature of DESs is that they possess distinct bulk liquid and interfacial nanostructure, which results from intra- and inter-molecular interactions, including coulomb forces, hydrogen bonding, van der Waals interactions, electrostatics, dispersion forces, and apolar-polar segregation. This nanostructure manifests as preferential spatial arrangements of the different species, and exists over several length scales, from molecular- to nano- and meso-scales. The physicochemical properties of DESs are dictated by structure-property relationships; however, there is a significant gap in our understanding of the underlying factors which govern their solvent properties. This is a major limitation of DES-based technologies, as nanostructure can significantly influence physical properties and thus potential applications. This perspective provides an overview of the current state of knowledge of DES nanostructure, both in the bulk liquid and at solid interfaces. We provide definitions which clearly distinguish DESs as a unique solvent class, rather than a subset of ILs. An appraisal of recent work provides hints towards trends in structure-property relationships, while also highlighting inconsistencies within the literature suggesting new research directions for the field. It is hoped that this review will provide insight into DES nanostructure, their potential applications, and development of a robust framework for systematic investigation moving forward.


Subject(s)
Nanostructures , Catalysis , Deep Eutectic Solvents , Hydrogen Bonding , Solvents
19.
Adv Mater ; 33(43): e2104793, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34510605

ABSTRACT

The introduction of trace impurities within the doping processes of semiconductors is still a technological challenge for the electronics industries. By taking advantage of the selective enrichment of liquid metal interfaces, and harvesting the doped metal oxide semiconductor layers, the complexity of the process can be mitigated and a high degree of control over the outcomes can be achieved. Here, a mechanism of natural filtering for the preparation of doped 2D semiconducting sheets based on the different migration tendencies of metallic elements in the bulk competing for enriching the interfaces is proposed. As a model, liquid metal alloys with different weight ratios of Sn and Bi in the bulk are employed for harvesting Bi2 O3 -doped SnO nanosheets. In this model, Sn shows a much stronger tendency than Bi to occupy surface sites of the Bi-Sn alloys, even at the very high concentrations of Bi in the bulk. This provides the opportunity for creating SnO 2D sheets with tightly controlled Bi2 O3 dopants. By way of example, it is demonstrated how such nanosheets could be made selective to both reducing and oxidizing environmental gases. The process demonstrated here offers significant opportunities for future synthesis and fabrication processes in the electronics industries.

20.
J Chem Phys ; 155(7): 074505, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34418930

ABSTRACT

Deep Eutectic Solvents (DESs) are complex solutions that present unique challenges compared to traditional solvents. Unlike most aqueous electrolytes and ionic liquids, DESs have delicate hydrogen bond networks that are responsible for their highly sensitive compositional dependence on the melting point. Prior work has demonstrated a unique nanoscale structure both experimentally and theoretically that brings both challenges and opportunities to their adoption in traditional electrochemical processes. In this study, we use in situ sample-rotated ultra-small angle x-ray scattering to resolve the near-interface solvent structure after electrodepositing Pd nanoparticles onto a glassy carbon electrode in choline chloride:urea and choline chloride:ethylene glycol DESs. Our results indicate that a hierarchical solvent structure can be observed on the meso-scale in the choline chloride:urea and choline chloride:ethylene glycol systems. Importantly, this extended solvent structure increases between -0.3 V and -0.5 V (vs Ag/AgCl) and remains high until -0.9 V (vs Ag/AgCl). Experimentally, the nature of this structure is more pronounced in the ethylene glycol system, as evidenced by both the x-ray scattering and the electrochemical impedance spectroscopy. Molecular dynamics simulations and dipolar orientation analysis reveal that chloride delocalization near the Pd interface and long-range interactions between the choline and each hydrogen bond donor (HBD) are very different and qualitatively consistent with the experimental data. These results show how the long-range solvent-deposit interactions can be tuned by changing the HBD in the DES and the applied potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...