Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 77(12): 5375-5381, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34302709

ABSTRACT

BACKGROUND: Digitaria insularis is a weed species that has gained considerable importance in Brazil's soybean production areas that rely on glyphosate-resistant cultivars. Herbicide-resistant weed populations of this species have been reported in many regions in Brazil, first in the south, followed by later reports in the north. We hypothesized that the spread of herbicide-resistant D. insularis is facilitated by movement of agricultural machinery from the southern regions of Brazil. RESULTS: Population genomics revealed a weak or no genetic structure (FST  = [0; 0.16]), moderate expected heterozygosity (HE  = 0.15; 0.44) and low inbreeding (FIS  = [-0.1; 0.1]) in D. insularis populations. Our data supported the hypothesis that herbicide resistance gene flow predominantly occurred in a south-to-north direction based on a migration analysis. We also found evidence of local adaptation of resistant populations in the northern soybean-growing regions of Brazil. CONCLUSION: Evidence in our work suggests that gene flow of glyphosate-resistant D. insularis is associated with movement of agricultural machinery, although local selection pressure seems to play an important role in the evolution of herbicide resistance throughout the country. Our results suggest preventive practices such as equipment sanitation should be implemented to limit the spread of herbicide resistant D. insularis. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Digitaria , Herbicides , Brazil , Herbicide Resistance/genetics , Herbicides/pharmacology , Metagenomics , Plant Weeds , Glycine max/genetics
2.
An Acad Bras Cienc ; 93(1): e20190425, 2021.
Article in English | MEDLINE | ID: mdl-33825789

ABSTRACT

Conyza species are important weeds in global agriculture, especially due to their capacity to evolve resistance to multiple herbicide mechanisms of action. We aimed to evaluate the frequency and distribution of resistance to glyphosate and chlorimuron-ethyl in Conyza spp. populations from Brazil. Seed samples were collected from grain production areas across nine Brazilian states over five consecutive years (2014 to 2018). Prior to resistance monitoring trials, dose-response assays were conducted to determine a single dose of glyphosate or chlorimuron-ethyl to discriminate resistant and susceptible populations. Resistance monitoring based on plant responses to the application of discriminatory doses of glyphosate (960 g ha-1) or chlorimuron-ethyl (20 g ha-1). Populations were classified as resistant, moderately resistant, or susceptible to either herbicide. While glyphosate resistance was highly frequent (71.2%) in all the five years, chlorimuron-ethyl resistant populations occurred at 39.8% of the total. The frequency of multiple resistance to both herbicides (35.3%) was proportional to the occurrence of chlorimuron-ethyl resistance (39.6%). Resistance to glyphosate and to chlorimuron-ethyl were found across all states evaluated.


Subject(s)
Conyza , Herbicides , Brazil , Glycine/analogs & derivatives , Glycine/pharmacology , Herbicide Resistance , Herbicides/pharmacology , Glyphosate
3.
Pest Manag Sci ; 72(9): 1758-64, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26662356

ABSTRACT

BACKGROUND: Overreliance on glyphosate as a single tool for weed management in agricultural systems in Brazil has selected glyphosate-resistant populations of tall windmill grass (Chloris elata Desv.). RESULTS: Two C. elata populations, one glyphosate resistant (GR) and one glyphosate susceptible (GS), were studied in detail for a dose-response experiment and for resistance mechanism. The dose causing 50% reduction in dry weight was 620 g a.e. ha(-1) for GR and 114 g ha(-1) for GS, resulting in an R/S ratio of 5.4. GS had significantly higher maximum (14) C-glyphosate absorption into the treated leaf (51.3%) than GR (39.5%), a difference of 11.8% in maximum absorption. GR also retained more (14) C-glyphosate in the treated leaf (74%) than GS (51%), and GR translocated less glyphosate (27%) to other plant parts (stems, roots and root exudation) than GS (36%). There were no mutations at the Pro106 codon in the gene encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). There was no difference in EPSPS genomic copy number or EPSPS transcription between GS and GR populations. CONCLUSION: Based on these data, reduced glyphosate absorption and increased glyphosate retention in the treated leaf contribute to glyphosate resistance in this C. elata population from Brazil. © 2015 Society of Chemical Industry.


Subject(s)
3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Glycine/analogs & derivatives , Herbicide Resistance/genetics , Herbicides/pharmacology , Plant Proteins/genetics , Poaceae/drug effects , 3-Phosphoshikimate 1-Carboxyvinyltransferase/chemistry , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Amino Acid Sequence , Brazil , Glycine/pharmacology , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Poaceae/genetics , Poaceae/metabolism , Sequence Alignment , Glyphosate
4.
Pest Manag Sci ; 64(4): 422-7, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18283713

ABSTRACT

South America represents about 12% of the global land area, and Brazil roughly corresponds to 47% of that. The major sustainable agricultural system in South America is based on a no-tillage cropping system, which is a worldwide adopted agricultural conservation system. Societal benefits of conservation systems in agriculture include greater use of conservation tillage, which reduces soil erosion and associated loading of pesticides, nutrients and sediments into the environment. However, overreliance on glyphosate and simpler cropping systems has resulted in the selection of tolerant weed species through weed shifts (WSs) and evolution of herbicide-resistant weed (HRW) biotypes to glyphosate. It is a challenge in South America to design herbicide- and non-herbicide-based strategies that effectively delay and/or manage evolution of HRWs and WSs to weeds tolerant to glyphosate in cropping systems based on recurrent glyphosate application, such as those used with glyphosate-resistant soybeans. The objectives of this paper are (i) to provide an overview of some factors that influence WSs and HRWs to glyphosate in South America, especially in Brazil, Argentina and Paraguay soybean cropped areas; (ii) to discuss the viability of using crop rotation and/or cover crops that might be integrated with forage crops in an economically and environmentally sustainable system; and (iii) to summarize the results of a survey of the perceptions of Brazilian farmers to problems with WSs and HRWs to glyphosate, and the level of adoption of good agricultural practices in order to prevent or manage it.


Subject(s)
Agriculture/trends , Biological Evolution , Glycine/analogs & derivatives , Herbicides , Plants/genetics , Crops, Agricultural , Herbicide Resistance/genetics , Plants, Genetically Modified , South America , Glyphosate
5.
J Environ Sci Health B ; 40(1): 1-11, 2005.
Article in English | MEDLINE | ID: mdl-15656156

ABSTRACT

Brazilian off-season maize production is characterized by low yield due to several factors, such as climate variability and inadequate management practices, specifically weed management. Thus, the goal of this study was to determinate the critical period of weed competition in off-season maize (Zea mays L.) crop using thermal units or growing degree days (GDD) approach to characterize crop growth and development. The study was carried out in experimental area of the University of São Paulo, Brazil, with weed control (C), as well as seven coexistence periods, 2, 4, 6, 8, and 12 leaves, flowering, and all crop cycle; fourteen treatments were done. Climate data were obtained from a weather station located close to the experimental area. To determine the critical period for weed control (CPWC) logistic models were fitted to yield data obtained in both W and C, as a function of GDD. For an arbitrary maximum yield loss fixed in 2.5%, the CPWC was found between 301 and 484 GDD (7-8 leaves). Also, when the arbitrary loss yield was fixed in 5 and 10%, the period before interference (PBI) was higher than the critical weed-free period (CWFP), suggesting that the weeds control can be done with only one application, between 144 and 410 GDD and 131 and 444 GDD (3-8 leaves), respectively. The GDD approach to characterize crop growth and development was successfully used to determine the critical period of weeds control in maize sown off-season. Further works will be necessary to better characterize the interaction and complexity of maize sown off-season with weeds. However, these results are encouraging because the possibility of the results to be extrapolated and because the potential of the method on providing important results to researchers, specifically crop modelers.


Subject(s)
Agriculture , Climate , Models, Theoretical , Zea mays/growth & development , Brazil , Pest Control , Plant Development , Population Dynamics , Seasons
6.
J Environ Sci Health B ; 40(1): 21-8, 2005.
Article in English | MEDLINE | ID: mdl-15656158

ABSTRACT

The objective of this research was to study population dynamics of the weed crabgrass, genus Digitaria, submitted to selection pressure by herbicides currently applied in sugarcane crops in Brazil. In the first experiment two crabgrass species (Digitaria nuda and Digitaria ciliaris) and eight herbicide treatments applied in preemergence were used, and control percentage was evaluated at 7, 14, and 21 days after herbicide application (DAA). In the second experiment the level of tolerance through dose-response curve was determined for the species D. nuda and D. ciliaris, to the herbicides imazapyr, tebuthiuron, ametryne, and metribuzin. All the herbicides studied were efficient in controlling D. ciliaris, however, for D. nuda the best results were obtained only with ametryne, metribuzin, and isoxaflutole. The relation (T/S) between the rate required to reduce plant dry biomass (GR50) at 21 DAA of D. nuda and D. ciliaris was 16 for imazapyr and 6.3 for tebuthiuron, showing differential susceptibility of species; however for ametryne the rate T/S of 1.1 showed that D. nuda was not tolerant to this herbicide. For metribuzin, at 1.92 kg a.i. ha(-1), reduction of dry biomass was 80 and 90% to D. nuda and D. ciliaris, respectively. Even being controlled by metribuzin, D. nuda presented a higher level of tolerance to this herbicide, what was confirmed by the relationship T/S 14.4. As general conclusion of the research, it can be stated that the species D. nuda is more tolerant to ALS inhibiting herbicides and substituted urea, when compared with D. ciliaris; probably, D. nuda was selected by repetitive use of these herbicides.


Subject(s)
Digitaria/growth & development , Herbicides/pharmacology , Selection, Genetic , Biomass , Pest Control , Population Dynamics , Saccharum
SELECTION OF CITATIONS
SEARCH DETAIL
...