Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Nucl Cardiol ; 24(2): 698-707, 2017 04.
Article in English | MEDLINE | ID: mdl-26846369

ABSTRACT

BACKGROUND: A phantom assembly that simulates the respiratory motion of the heart was used to investigate artifacts and their impact on defect detection. METHODS: SPECT/CT images were acquired for phantoms with and without small and large cardiac defects during normal and deep breathing, and also at four static respiratory phases. Acquisitions were reconstructed with and without AC, and with misalignment of transmission and emission scans. A quantitative analysis was performed to assess artifacts. Two physicians reported on defect presence or absence and their results were evaluated. RESULTS: All large defects were correctly reported. Attenuation reduced uptake in the basal LV walls, increasing FN physicians' reports for small defects. Respiratory motion reduced uptake mainly in the anterior and inferior walls increasing FP and FN reports on images without and with small defects, respectively. Artifacts due to misalignment between CT and SPECT scans in normal breathing phantoms did not influence the physicians' reports. CONCLUSIONS: Attenuation and respiratory motion correction should be applied to reduce artifacts before reporting on small defects in deep breathing conditions. Artifacts due to misalignment between CT and SPECT scans do not affect defect detection in normal breathing when the LV is co-registered in SPECT and CT images prior to AC.


Subject(s)
Artifacts , Heart Diseases/diagnostic imaging , Myocardial Perfusion Imaging/instrumentation , Phantoms, Imaging , Respiratory Mechanics , Tomography, Emission-Computed, Single-Photon/instrumentation , Equipment Design , Equipment Failure Analysis , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Motion , Myocardial Perfusion Imaging/methods , Reproducibility of Results , Sensitivity and Specificity , Tomography, Emission-Computed, Single-Photon/methods
2.
J Nucl Cardiol ; 24(4): 1216-1225, 2017 08.
Article in English | MEDLINE | ID: mdl-26676030

ABSTRACT

BACKGROUND: The aim of this study was to determine the impact of respiratory motion correction on SPECT MPI and on defect detection using a phantom assembly. METHODS: SPECT/CT data were acquired using an anthropomorphic phantom with inflatable lungs and with an ECG beating and moving cardiac compartment. The heart motion followed the respiratory pattern in the cranio-caudal direction to simulate normal or deep breathing. Small or large transmural defects were inserted into the myocardial wall of the left ventricle. SPECT/CT images were acquired for each of the four respiratory phases, from exhale to inhale. A respiratory motion correction was applied using an image-based method with transformation parameters derived from the SPECT data by a non-rigid registration algorithm. A report on defect detection from two physicians and a quantitative analysis on MPI data were performed before and after applying motion correction. RESULTS: Respiratory motion correction eliminated artifacts present in the images, resulting in a uniform uptake and reduction of motion blurring, especially in the inferior and anterior regions of the LV myocardial walls. The physicians' report after motion correction showed that images were corrected for motion. CONCLUSIONS: A combination of motion correction with attenuation correction reduces artifacts in SPECT MPI. AC-SPECT images with and without motion correction should be simultaneously inspected to report on small defects.


Subject(s)
Heart Diseases/diagnostic imaging , Myocardial Perfusion Imaging/methods , Phantoms, Imaging , Respiration , Single Photon Emission Computed Tomography Computed Tomography/methods , Humans , Motion
3.
J Nucl Cardiol ; 20(4): 609-15, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23709278

ABSTRACT

BACKGROUND: The diagnostic sensitivity of various SPECT MPI procedures was assessed using a pumping cardiac phantom with variable defects inserted in the myocardial wall of the left ventricle. METHODS AND RESULTS: A diagnostic evaluation of 142 myocardial defects was performed. A diagnosis blinded to prior-known conditions was compared to the known defects severity (transmural, subendocardial) and defects position within the myocardial wall of the left ventricle (apical, anterior, inferior) for three body types (average male, large male, large female). Non-attenuation corrected, attenuation corrected and gated SPECT MPI were performed. The diagnostic sensitivity was improved when applying attenuation correction or gating techniques to identify subendocardial defects in the inferior, anterior and apical segments of the myocardial wall of the left ventricle for all three body types. Transmural defects could be identified without any attenuation correction or gating. CONCLUSIONS: The diagnostic sensitivity was improved when applying AC or GSPECT techniques.


Subject(s)
Coronary Artery Disease/diagnostic imaging , Heart/diagnostic imaging , Myocardial Perfusion Imaging/methods , Myocardium/pathology , Tomography, Emission-Computed, Single-Photon/methods , Ventricular Dysfunction, Left/diagnostic imaging , Adult , Artifacts , Diastole , Equipment Design , Female , Heart Ventricles/abnormalities , Heart Ventricles/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Phantoms, Imaging , Sensitivity and Specificity , Systole , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL