Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L604-L617, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38442187

ABSTRACT

Postnatal lung development results in an increasingly functional organ prepared for gas exchange and pathogenic challenges. It is achieved through cellular differentiation and migration. Changes in the tissue architecture during this development process are well-documented and increasing cellular diversity associated with it are reported in recent years. Despite recent progress, transcriptomic and molecular pathways associated with human postnatal lung development are yet to be fully understood. In this study, we investigated gene expression patterns associated with healthy pediatric lung development in four major enriched cell populations (epithelial, endothelial, and nonendothelial mesenchymal cells, along with lung leukocytes) from 1-day-old to 8-yr-old organ donors with no known lung disease. For analysis, we considered the donors in four age groups [less than 30 days old neonates, 30 days to < 1 yr old infants, toddlers (1 to < 2 yr), and children 2 yr and older] and assessed differentially expressed genes (DEG). We found increasing age-associated transcriptional changes in all four major cell types in pediatric lung. Transition from neonate to infant stage showed highest number of DEG compared with the number of DEG found during infant to toddler- or toddler to older children-transitions. Profiles of differential gene expression and further pathway enrichment analyses indicate functional epithelial cell maturation and increased capability of antigen presentation and chemokine-mediated communication. Our study provides a comprehensive reference of gene expression patterns during healthy pediatric lung development that will be useful in identifying and understanding aberrant gene expression patterns associated with early life respiratory diseases.NEW & NOTEWORTHY This study presents postnatal transcriptomic changes in major cell populations in human lung, namely endothelial, epithelial, mesenchymal cells, and leukocytes. Although human postnatal lung development continues through early adulthood, our results demonstrate that greatest transcriptional changes occur in first few months of life during neonate to infant transition. These early transcriptional changes in lung parenchyma are particularly notable for functional maturation and activation of alveolar type II cell genes.


Subject(s)
Lung , Transcriptome , Humans , Lung/growth & development , Lung/metabolism , Infant, Newborn , Infant , Child , Child, Preschool , Male , Female , Sequence Analysis, RNA/methods , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental , Gene Expression Profiling
2.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L135-L148, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38084407

ABSTRACT

Bronchiolitis obliterans (BO) is a fibrotic lung disease characterized by progressive luminal narrowing and obliteration of the small airways. In the nontransplant population, inhalation exposure to certain chemicals is associated with BO; however, the mechanisms contributing to disease induction remain poorly understood. This study's objective was to use single-cell RNA sequencing for the identification of transcriptomic signatures common to primary human airway epithelial cells after chemical exposure to BO-associated chemicals-diacetyl or nitrogen mustard-to help explain BO induction. Primary airway epithelial cells were cultured at air-liquid interface and exposed to diacetyl, nitrogen mustard, or control vapors. Cultures were dissociated and sequenced for single-cell RNA. Differential gene expression and functional pathway analyses were compared across exposures. In total, 75,663 single cells were captured and sequenced from all exposure conditions. Unbiased clustering identified 11 discrete phenotypes, including 5 basal, 2 ciliated, and 2 secretory cell clusters. With chemical exposure, the proportion of cells assigned to keratin 5+ basal cells decreased, whereas the proportion of cells aligned to secretory cell clusters increased compared with control exposures. Functional pathway analysis identified interferon signaling and antigen processing/presentation as pathways commonly upregulated after diacetyl or nitrogen mustard exposure in a ciliated cell cluster. Conversely, the response of airway basal cells differed significantly with upregulation of the unfolded protein response in diacetyl-exposed basal cells, not seen in nitrogen mustard-exposed cultures. These new insights provide early identification of airway epithelial signatures common to BO-associated chemical exposures.NEW & NOTEWORTHY Bronchiolitis obliterans (BO) is a devastating fibrotic lung disease of the small airways, or bronchioles. This original manuscript uses single-cell RNA sequencing for identifying common signatures of chemically exposed airway epithelial cells in BO induction. Chemical exposure reduced the proportion of keratin 5+ basal cells while increasing the proportion of keratin 4+ suprabasal cells. Functional pathways contributory to these shifts differed significantly across exposures. These new results highlight similarities and differences in BO induction across exposures.


Subject(s)
Bronchiolitis Obliterans , Diacetyl , Humans , Keratin-5/metabolism , Diacetyl/metabolism , Mechlorethamine/metabolism , Respiratory Mucosa/metabolism , Bronchiolitis Obliterans/chemically induced , Bronchiolitis Obliterans/metabolism , Epithelial Cells/metabolism
3.
PLoS One ; 18(2): e0281898, 2023.
Article in English | MEDLINE | ID: mdl-36827401

ABSTRACT

Coronavirus disease (COVID-19) is an infectious disease caused by the SARS coronavirus 2 (SARS-CoV-2) virus. Direct assessment, detection, and quantitative analysis using high throughput methods like single-cell RNA sequencing (scRNAseq) is imperative to understanding the host response to SARS-CoV-2. One barrier to studying SARS-CoV-2 in the laboratory setting is the requirement to process virus-infected cell cultures, and potentially infectious materials derived therefrom, under Biosafety Level 3 (BSL-3) containment. However, there are only 190 BSL3 laboratory facilities registered with the U.S. Federal Select Agent Program, as of 2020, and only a subset of these are outfitted with the equipment needed to perform high-throughput molecular assays. Here, we describe a method for preparing non-hazardous RNA samples from SARS-CoV-2 infected cells, that enables scRNAseq analyses to be conducted safely in a BSL2 facility-thereby making molecular assays of SARS-CoV-2 cells accessible to a much larger community of researchers. Briefly, we infected African green monkey kidney epithelial cells (Vero-E6) with SARS-CoV-2 for 96 hours, trypsin-dissociated the cells, and inactivated them with methanol-acetone in a single-cell suspension. Fixed cells were tested for the presence of infectious SARS-CoV-2 virions using the Tissue Culture Infectious Dose Assay (TCID50), and also tested for viability using flow cytometry. We then tested the dissociation and methanol-acetone inactivation method on primary human lung epithelial cells that had been differentiated on an air-liquid interface. Finally, we performed scRNAseq quality control analysis on the resulting cell populations to evaluate the effects of our virus inactivation and sample preparation protocol on the quality of the cDNA produced. We found that methanol-acetone inactivated SARS-CoV-2, fixed the lung epithelial cells, and could be used to obtain noninfectious, high-quality cDNA libraries. This methodology makes investigating SARS-CoV-2, and related high-containment RNA viruses at a single-cell level more accessible to an expanded community of researchers.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Chlorocebus aethiops , Methanol , Acetone , Single-Cell Gene Expression Analysis , Epithelial Cells
4.
PLoS Comput Biol ; 17(12): e1009617, 2021 12.
Article in English | MEDLINE | ID: mdl-34962914

ABSTRACT

Respiratory syncytial virus (RSV) infection results in millions of hospitalizations and thousands of deaths each year. Variations in the adaptive and innate immune response appear to be associated with RSV severity. To investigate the host response to RSV infection in infants, we performed a systems-level study of RSV pathophysiology, incorporating high-throughput measurements of the peripheral innate and adaptive immune systems and the airway epithelium and microbiota. We implemented a novel multi-omic data integration method based on multilayered principal component analysis, penalized regression, and feature weight back-propagation, which enabled us to identify cellular pathways associated with RSV severity. In both airway and immune cells, we found an association between RSV severity and activation of pathways controlling Th17 and acute phase response signaling, as well as inhibition of B cell receptor signaling. Dysregulation of both the humoral and mucosal response to RSV may play a critical role in determining illness severity.


Subject(s)
Genomics/methods , Respiratory Syncytial Virus Infections , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Infant , Machine Learning , Microbiota/immunology , Nasal Cavity/cytology , Nasal Cavity/immunology , Nasal Cavity/metabolism , RNA-Seq , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus Infections/physiopathology , Severity of Illness Index
5.
BMC Med Genomics ; 14(1): 57, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33632195

ABSTRACT

BACKGROUND: A substantial number of infants infected with RSV develop severe symptoms requiring hospitalization. We currently lack accurate biomarkers that are associated with severe illness. METHOD: We defined airway gene expression profiles based on RNA sequencing from nasal brush samples from 106 full-tem previously healthy RSV infected subjects during acute infection (day 1-10 of illness) and convalescence stage (day 28 of illness). All subjects were assigned a clinical illness severity score (GRSS). Using AIC-based model selection, we built a sparse linear correlate of GRSS based on 41 genes (NGSS1). We also built an alternate model based upon 13 genes associated with severe infection acutely but displaying stable expression over time (NGSS2). RESULTS: NGSS1 is strongly correlated with the disease severity, demonstrating a naïve correlation (ρ) of ρ = 0.935 and cross-validated correlation of 0.813. As a binary classifier (mild versus severe), NGSS1 correctly classifies disease severity in 89.6% of the subjects following cross-validation. NGSS2 has slightly less, but comparable, accuracy with a cross-validated correlation of 0.741 and classification accuracy of 84.0%. CONCLUSION: Airway gene expression patterns, obtained following a minimally-invasive procedure, have potential utility for development of clinically useful biomarkers that correlate with disease severity in primary RSV infection.


Subject(s)
Respiratory Syncytial Virus Infections , Humans , Infant , Male , Respiratory Syncytial Viruses , Severity of Illness Index , Transcriptome
6.
J Infect Dis ; 223(9): 1639-1649, 2021 05 20.
Article in English | MEDLINE | ID: mdl-32926149

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is the leading cause of severe respiratory disease in infants. The causes and correlates of severe illness in the majority of infants are poorly defined. METHODS: We recruited a cohort of RSV-infected infants and simultaneously assayed the molecular status of their airways and the presence of airway microbiota. We used rigorous statistical approaches to identify gene expression patterns associated with disease severity and microbiota composition, separately and in combination. RESULTS: We measured comprehensive airway gene expression patterns in 106 infants with primary RSV infection. We identified an airway gene expression signature of severe illness dominated by excessive chemokine expression. We also found an association between Haemophilus influenzae, disease severity, and airway lymphocyte accumulation. Exploring the time of onset of clinical symptoms revealed acute activation of interferon signaling following RSV infection in infants with mild or moderate illness, which was absent in subjects with severe illness. CONCLUSIONS: Our data reveal that airway gene expression patterns distinguish mild/moderate from severe illness. Furthermore, our data identify biomarkers that may be therapeutic targets or useful for measuring efficacy of intervention responses.


Subject(s)
Microbiota , Respiratory Syncytial Virus Infections , Respiratory System/metabolism , Transcriptome , Humans , Infant , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus, Human , Respiratory System/virology , Severity of Illness Index
7.
Vaccine X ; 5: 100065, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32529184

ABSTRACT

Respiratory syncytial virus (RSV) is the most important cause of respiratory tract illness especially in young infants that develop severe disease requiring hospitalization, and accounting for 74,000-126,000 admissions in the United States (Rezaee et al., 2017; Resch, 2017). Observations of neonatal and infant T cells suggest that they may express different immune markers compared to T-cells from older children. Flow cytometry analysis of cellular responses using "conventional" anti-viral markers (IL2, IFN-γ, TNF, IL10 and IL4) upon RSV-peptide stimulation detected an overall low RSV response in peripheral blood. Therefore we sought an unbiased approach to identify RSV-specific immune markers using RNA-sequencing upon stimulation of infant PBMCs with overlapping peptides representing RSV antigens. To understand the cellular response using transcriptional signatures, transcription factors and cell-type specific signatures were used to investigate breadth of response across peptides. Unexpected from the ICS data, M peptide induced a response equivalent to the F-peptide and was characterized by activation of GATA2, 3, STAT3 and IRF1. This along with upregulation of several unconventional T cell signatures was only observed upon M-peptide stimulation. Moreover, signatures of natural RSV infections were identified from the data available in the public domain to investigate similarities between transcriptional signatures from PBMCs and upon peptide stimulation. This analysis also suggested activation of T cell response upon M-peptide stimulation. Hence, based on transcriptional response, markers were chosen to validate the role of M-peptide in activation of T cells. Indeed, CD4+CXCL9+ cells were identified upon M-peptide stimulation by flow cytometry. Future work using additional markers identified in this study could reveal additional unconventional T cells responding to RSV infections in infants. In conclusion, T cell responses to RSV in infants may not follow the canonical Th1/Th2 patterns of effector responses but include additional functions that may be unique to the neonatal period and correlate with clinical outcomes.

8.
Pediatr Res ; 87(5): 862-867, 2020 04.
Article in English | MEDLINE | ID: mdl-31726465

ABSTRACT

BACKGROUND: Data on the host factors that contribute to infection of young children by respiratory syncytial virus (RSV) are limited. The human chemokine receptor, CX3CR1, has recently been implicated as an RSV receptor. Here we evaluate a role for CX3CR1 in pediatric lung RSV infections. METHODS: CX3CR1 transcript levels in the upper and lower pediatric airways were assessed. Tissue localization and cell-specific expression was confirmed using in situ hybridization and immunohistochemistry. The role of CX3CR1 in RSV infection was also investigated using a novel physiological model of pediatric epithelial cells. RESULTS: Low levels of CX3CR1 transcript were often, but not always, expressed in both upper (62%) and lower airways (36%) of pediatric subjects. CX3CR1 transcript and protein expression was detected in epithelial cells of normal human pediatric lung tissues. CX3CR1 expression was readily detected on primary cultures of differentiated pediatric/infant human lung epithelial cells. RSV demonstrated preferential infection of CX3CR1-positive cells, and blocking CX3CR1/RSV interaction significantly decreased viral load. CONCLUSION: CX3CR1 is present in the airways of pediatric subjects where it may serve as a receptor for RSV infection. Furthermore, CX3CR1 appears to play a mechanistic role in mediating viral infection of pediatric airway epithelial cells in vitro.


Subject(s)
CX3C Chemokine Receptor 1/physiology , Receptors, Virus/physiology , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus Infections/virology , Cell Line , Child , Child, Preschool , Epithelial Cells/cytology , Epithelial Cells/metabolism , Green Fluorescent Proteins/metabolism , Humans , Immunohistochemistry , In Situ Hybridization , Infant , Infant, Newborn , Lung/metabolism , Lung/virology , Respiratory Syncytial Virus, Human , Virus Diseases
9.
Sci Rep ; 9(1): 13824, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554845

ABSTRACT

Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections and hospital visits during infancy and childhood. Although risk factors for RSV infection have been identified, the role of microbial species in the respiratory tract is only partially known. We aimed to understand the impact of interactions between the nasal microbiome and host transcriptome on the severity and clinical outcomes of RSV infection. We used 16 S rRNA sequencing to characterize the nasal microbiome of infants with RSV infection. We used RNA sequencing to interrogate the transcriptome of CD4+ T cells obtained from the same set of infants. After dimension reduction through principal component (PC) analysis, we performed an integrative analysis to identify significant co-variation between microbial clade and gene expression PCs. We then employed LIONESS (Linear Interpolation to Obtain Network Estimates for Single Samples) to estimate the clade-gene association patterns for each infant. Our network-based integrative analysis identified several clade-gene associations significantly related to the severity of RSV infection. The microbial taxa with the highest loadings in the implicated clade PCs included Moraxella, Corynebacterium, Streptococcus, Haemophilus influenzae, and Staphylococcus. Interestingly, many of the genes with the highest loadings in the implicated gene PCs are encoded in mitochondrial DNA, while others are involved in the host immune response. This study on microbiome-transcriptome interactions provides insights into how the host immune system mounts a response against RSV and specific infectious agents in nasal microbiota.


Subject(s)
Bacteria/classification , Computational Biology/methods , Gene Expression Profiling/methods , Haemophilus influenzae/classification , Nose/microbiology , Respiratory Syncytial Virus Infections/genetics , Bacteria/genetics , Bacteria/isolation & purification , CD4-Positive T-Lymphocytes/chemistry , Female , Gene Regulatory Networks , Haemophilus influenzae/genetics , Haemophilus influenzae/isolation & purification , Humans , Infant , Male , Microbiota , RNA, Ribosomal, 16S/genetics , Respiratory Syncytial Virus Infections/virology , Sequence Analysis, RNA , Severity of Illness Index , Software
10.
JMIR Res Protoc ; 8(6): e12907, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31199303

ABSTRACT

BACKGROUND: The majority of infants hospitalized with primary respiratory syncytial virus (RSV) infection have no obvious risk factors for severe disease. OBJECTIVE: The aim of this study (Assessing Predictors of Infant RSV Effects and Severity, AsPIRES) was to identify factors associated with severe disease in full-term healthy infants younger than 10 months with primary RSV infection. METHODS: RSV infected infants were enrolled from 3 cohorts during consecutive winters from August 2012 to April 2016 in Rochester, New York. A birth cohort was prospectively enrolled and followed through their first winter for development of RSV infection. An outpatient supplemental cohort was enrolled in the emergency department or pediatric offices, and a hospital cohort was enrolled on admission with RSV infection. RSV was diagnosed by reverse transcriptase-polymerase chain reaction. Demographic and clinical data were recorded and samples collected for assays: buccal swab (cytomegalovirus polymerase chain reaction, PCR), nasal swab (RSV qualitative PCR, complete viral gene sequence, 16S ribosomal ribonucleic acid [RNA] amplicon microbiota analysis), nasal wash (chemokine and cytokine assays), nasal brush (nasal respiratory epithelial cell gene expression using RNA sequencing [RNAseq]), and 2 to 3 ml of heparinized blood (flow cytometry, RNAseq analysis of purified cluster of differentiation [CD]4+, CD8+, B cells and natural killer cells, and RSV-specific antibody). Cord blood (RSV-specific antibody) was also collected for the birth cohort. Univariate and multivariate logistic regression will be used for analysis of data using a continuous Global Respiratory Severity Score (GRSS) as the outcome variable. Novel statistical methods will be developed for integration of the large complex datasets. RESULTS: A total of 453 infants were enrolled into the 3 cohorts; 226 in the birth cohort, 60 in the supplemental cohort, and 78 in the hospital cohort. A total of 126 birth cohort infants remained in the study and were evaluated for 150 respiratory illnesses. Of the 60 RSV positive infants in the supplemental cohort, 42 completed the study, whereas all 78 of the RSV positive hospital cohort infants completed the study. A GRSS was calculated for each RSV-infected infant and is being used to analyze each of the complex datasets by correlation with disease severity in univariate and multivariate methods. CONCLUSIONS: The AsPIRES study will provide insights into the complex pathogenesis of RSV infection in healthy full-term infants with primary RSV infection. The analysis will allow assessment of multiple factors potentially influencing the severity of RSV infection including the level of RSV specific antibodies, the innate immune response of nasal epithelial cells, the adaptive response by various lymphocyte subsets, the resident airway microbiota, and viral factors. Results of this study will inform disease interventions such as vaccines and antiviral therapies.

11.
J Infect Dis ; 216(8): 1027-1037, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28962005

ABSTRACT

Background: Nearly all children are infected with respiratory syncytial virus (RSV) within the first 2 years of life, with a minority developing severe disease (1%-3% hospitalized). We hypothesized that an assessment of the adaptive immune system, using CD4+ T-lymphocyte transcriptomics, would identify gene expression correlates of disease severity. Methods: Infants infected with RSV representing extremes of clinical severity were studied. Mild illness (n = 23) was defined as a respiratory rate (RR) < 55 and room air oxygen saturation (SaO2) ≥ 97%, and severe illness (n = 23) was defined as RR ≥ 65 and SaO2 ≤ 92%. RNA from fresh, sort-purified CD4+ T cells was assessed by RNA sequencing. Results: Gestational age, age at illness onset, exposure to environmental tobacco smoke, bacterial colonization, and breastfeeding were associated (adjusted P < .05) with disease severity. RNA sequencing analysis reliably measured approximately 60% of the genome. Severity of RSV illness had the greatest effect size upon CD4 T-cell gene expression. Pathway analysis identified correlates of severity, including JAK/STAT, prolactin, and interleukin 9 signaling. We also identified genes and pathways associated with timing of symptoms and RSV group (A/B). Conclusions: These data suggest fundamental changes in adaptive immune cell phenotypes may be associated with RSV clinical severity.


Subject(s)
Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus, Human/immunology , Transcriptome , CD4-Positive T-Lymphocytes/immunology , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Respiratory Syncytial Virus Infections/virology , Severity of Illness Index , Tobacco Smoke Pollution
12.
Sci Rep ; 6: 33994, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27658638

ABSTRACT

Responses by resident cells are likely to play a key role in determining the severity of respiratory disease. However, sampling of the airways poses a significant challenge, particularly in infants and children. Here, we report a reliable method for obtaining nasal epithelial cell RNA from infants for genome-wide transcriptomic analysis, and describe baseline expression characteristics in an asymptomatic cohort. Nasal epithelial cells were collected by brushing of the inferior turbinates, and gene expression was interrogated by RNA-seq analysis. Reliable recovery of RNA occurred in the absence of adverse events. We observed high expression of epithelial cell markers and similarity to the transcriptome for intrapulmonary airway epithelial cells. We identified genes displaying low and high expression variability, both inherently, and in response to environmental exposures. The greatest gene expression differences in this asymptomatic cohort were associated with the presence of known pathogenic viruses and/or bacteria. Robust bacteria-associated gene expression patterns were significantly associated with the presence of Moraxella. In summary, we have developed a reliable method for interrogating the infant airway transcriptome by sampling the nasal epithelium. Our data demonstrates both the fidelity and feasibility of our methodology, and describes normal gene expression and variation within a healthy infant cohort.

13.
Hepatology ; 62(2): 466-80, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25820676

ABSTRACT

UNLABELLED: Vascular invasion provides a direct route for tumor metastasis. The degree to which microRNA (miRNA) expression plays a role in tumor vascular invasion is unclear. Here, we report that miR-494 is up-regulated in human hepatocellular carcinoma (HCC) tumors with vascular invasion and can promote HCC cell invasiveness by gene inactivation of multiple invasion-suppressor miRNAs. Our results show that ten eleven translocation (TET) methylcytosine dioxygenase, predominantly TET1 in HCC cells, is a direct target of miR-494. The reduced 5'-hydroxymethylcytosine levels observed in the proximal cytosine-phosphate-guanine (CpG) regions of multiple invasion-suppressor miRNA genes are strongly associated with their transcriptional repression upon miR-494 overexpression, whereas enforced DNA demethylation can abolish the repression. Furthermore, TET1 knockdown shows a similar effect as miR-494 overexpression. Conversely, miR-494 inhibition or enforced TET1 expression is able to restore invasion-suppressor miRNAs and inhibit miR-494-mediated HCC cell invasion. CONCLUSIONS: miR-494 can trigger gene silencing of multiple invasion-suppressor miRNAs by inhibiting genomic DNA demethylation by direct targeting of TET1, thereby leading to tumor vascular invasion.


Subject(s)
Carcinoma, Hepatocellular/genetics , DNA-Binding Proteins/genetics , Liver Neoplasms/genetics , MicroRNAs/genetics , Proto-Oncogene Proteins/genetics , Translocation, Genetic/genetics , Animals , Biopsy, Needle , Carcinoma, Hepatocellular/pathology , Cell Movement/genetics , DNA Methylation , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Gene Silencing , Hep G2 Cells/pathology , Heterografts , Humans , Immunohistochemistry , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mixed Function Oxygenases , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Real-Time Polymerase Chain Reaction/methods , Sampling Studies , Up-Regulation
14.
Am J Physiol Lung Cell Mol Physiol ; 307(7): L516-23, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25150061

ABSTRACT

Premature infants requiring supplemental oxygen are at increased risk for developing bronchopulmonary dysplasia (BPD). Rodent models involving neonatal exposure to excessive oxygen concentrations (hyperoxia) have helped to identify mechanisms of BPD-associated pathology. Genome-wide assessments of the effects of hyperoxia in neonatal mouse lungs could identify novel BPD-related genes and pathways. Newborn C57BL/6 mice were exposed to 100% oxygen for 10 days, and whole lung tissue RNA was used for high-throughput, sequencing-based transcriptomic analysis (RNA-Seq). Significance Analysis of Microarrays and Ingenuity Pathway Analysis were used to identify genes and pathways affected. Expression patterns for selected genes were validated by qPCR. Mechanistic relationships between genes were further tested in cultured mouse lung epithelial cells. We identified 300 genes significantly and substantially affected following acute neonatal hyperoxia. Canonical pathways dysregulated in hyperoxia lungs included nuclear factor (erythryoid-derived-2)-like 2-mediated oxidative stress signaling, p53 signaling, eNOS signaling, and aryl hydrocarbon receptor (Ahr) pathways. Cluster analysis identified Ccnd1, Cdkn1a, and Ahr as critical regulatory nodes in the response to hyperoxia, with Ahr serving as the major effector node. A mechanistic role for Ahr was assessed in lung epithelial cells, and we confirmed its ability to regulate the expression of multiple hyperoxia markers, including Cdkn1a, Pdgfrb, and A2m. We conclude that a global assessment of gene regulation in the acute neonatal hyperoxia model of BPD-like pathology has identified Ahr as one driver of gene dysregulation.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Hyperoxia/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Transcriptome , Animals , Animals, Newborn , Basic Helix-Loop-Helix Transcription Factors/genetics , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/metabolism , Cell Line , Cluster Analysis , Gene Expression Regulation , Gene Regulatory Networks , Genome , Humans , Hyperoxia/genetics , Lung/metabolism , Mice , Mice, Inbred C57BL , Receptors, Aryl Hydrocarbon/genetics , Signal Transduction
15.
J Exp Med ; 206(5): 1181-99, 2009 May 11.
Article in English | MEDLINE | ID: mdl-19414555

ABSTRACT

Neutrophils, the major phagocytes that form the first line of cell-mediated defense against microbial infection, are produced in the bone marrow and released into the circulation in response to granulocyte-colony stimulating factor (G-CSF). Here, we report that androgen receptor knockout (ARKO) mice are neutropenic and susceptible to acute bacterial infection, whereas castration only results in moderate neutrophil reduction in mice and humans. Androgen supplement can restore neutrophil counts via stabilizing AR in castrated mice, but not in ARKO and testicular feminization mutant (Tfm) mice. Our results show that deletion of the AR gene does not influence myeloid lineage commitment, but significantly reduces the proliferative activity of neutrophil precursors and retards neutrophil maturation. CXCR2-dependent migration is also decreased in ARKO neutrophils as compared with wild-type controls. G-CSF is unable to delay apoptosis in ARKO neutrophils, and ARKO mice show a poor granulopoietic response to exogenous G-CSF injection. In addition, AR can restore G-CSF-dependent granulocytic differentiation upon transduction into ARKO progenitors. We further found that AR augments G-CSF signaling by activating extracellular signal-regulated kinase 1/2 and also by sustaining Stat3 activity via diminishing the inhibitory binding of PIAS3 to Stat3. Collectively, our findings demonstrate an essential role for AR in granulopoiesis and host defense against microbial infection.


Subject(s)
Bacterial Infections/genetics , Neutropenia/etiology , Neutropenia/microbiology , Receptors, Androgen/deficiency , Animals , Bacterial Infections/prevention & control , Cell Differentiation , DNA Primers , Granulocytes/cytology , Granulocytes/microbiology , Granulocytes/physiology , Infertility, Male/genetics , Male , Mice , Mice, Knockout , Receptors, Androgen/genetics , Receptors, Androgen/physiology , Transcription, Genetic
16.
J Biomol Tech ; 18(3): 150-61, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17595311

ABSTRACT

Microarrays have revolutionized many areas of biology due to our technical ability to quantify tens of thousands of transcripts within a single experiment. However, there are still many areas that cannot benefit from this technology due to the amount of biological material needed for microarray analysis. In response to this demand, chemistries have been developed that boast the capability of generating targets from nanogram amounts of total RnA, reflecting minimal amounts of biological material, on the order of several hundred or thousand cells. Herein, we describe the evaluation of four chemistries for RnA amplification in terms of reproducibility, sensitivity, accuracy, and comparability to results from a single round of T7 amplification. No evidence for false-positive measurements of differential expression was observed. In contrast, clear differences between chemistries in sensitivity and accuracy were detected. PCR validation showed an interaction of probe sequence on the array and target labeling chemistry, resulting in a chemistry-dependent probe set sensitivity varying over an order of magnitude.


Subject(s)
Gene Expression Profiling/methods , Nucleic Acid Amplification Techniques/methods , Cell Line, Tumor , Humans , Sample Size , Sensitivity and Specificity
17.
Mol Endocrinol ; 19(5): 1200-12, 2005 May.
Article in English | MEDLINE | ID: mdl-15650026

ABSTRACT

Although the retinoic X receptor (RXR) forms heterodimers with many members of the estrogen receptor subfamily, the interaction between RXR and the members of the glucocorticoid receptor subfamily remains unclear. Here we show that the RXR can form a heterodimer with the androgen receptor (AR) under in vitro and in vivo conditions. Functional analyses further demonstrated that the AR, in the presence or absence of androgen, can function as a repressor to suppress RXR target genes, thereby preventing the RXR binding to the RXR DNA response element. In contrast, RXR can function as a repressor to suppress AR target genes in the presence of 9-cis-retinoic acid, but unliganded RXR can function as a weak coactivator to moderately enhance AR transactivation. Together, these results not only reveal a unique interaction between members of the two nuclear receptor subfamilies, but also represent the first evidence showing a nuclear receptor (RXR) may function as either a repressor or a coactivator based on the ligand binding status.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression/drug effects , Receptors, Androgen/metabolism , Retinoid X Receptors/metabolism , Tretinoin/pharmacology , Alitretinoin , Dimerization , Glutathione Transferase , Promoter Regions, Genetic/physiology , Prostate-Specific Antigen/genetics , Prostate-Specific Antigen/metabolism , Protein Structure, Tertiary , Response Elements/physiology , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...