Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
1.
New Phytol ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044442

ABSTRACT

Plants delicately regulate endogenous auxin levels through the coordination of transport, biosynthesis, and inactivation, which is crucial for growth and development. While it is well-established that the actin cytoskeleton can regulate auxin levels by affecting polar transport, its potential role in auxin biosynthesis has remained largely unexplored. Using LC-MS/MS-based methods combined with fluorescent auxin marker detection, we observed a significant increase in root auxin levels upon deletion of the actin bundling proteins AtFIM4 and AtFIM5. Fluorescent observation, immunoblotting analysis, and biochemical approaches revealed that AtFIM4 and AtFIM5 affect the protein abundance of the key auxin synthesis enzyme YUC8 in roots. AtFIM4 and AtFIM5 regulate the auxin synthesis enzyme YUC8 at the protein level, with its degradation mediated by the 26S proteasome. This regulation modulates auxin synthesis and endogenous auxin levels in roots, consequently impacting root development. Based on these findings, we propose a molecular pathway centered on the 'actin cytoskeleton-26S proteasome-YUC8-auxin' axis that controls auxin levels. Our findings shed light on a new pathway through which plants regulate auxin synthesis. Moreover, this study illuminates a newfound role of the actin cytoskeleton in regulating plant growth and development, particularly through its involvement in maintaining protein homeostasis via the 26S proteasome.

2.
J Biol Eng ; 18(1): 31, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715085

ABSTRACT

Alcohol consumption, a pervasive societal issue, poses considerable health risks and socioeconomic consequences. Alcohol-induced hepatic disorders, such as fatty liver disease, alcoholic hepatitis, chronic hepatitis, liver fibrosis, and cirrhosis, underscore the need for comprehensive research. Existing challenges in mimicking chronic alcohol exposure in cellular systems, attributed to ethanol evaporation, necessitate innovative approaches. In this study, we developed a simple, reusable, and controllable device for examining the physiological reactions of hepatocytes to long-term alcohol exposure. Our approach involved a novel device designed to continuously release ethanol into the culture medium, maintaining a consistent ethanol concentration over several days. We evaluated device performance by examining gene expression patterns and cytokine secretion alterations during long-term exposure to ethanol. These patterns were correlated with those observed in patients with alcoholic hepatitis. Our results suggest that our ethanol-releasing device can be used as a valuable tool to study the mechanisms of chronic alcohol-mediated hepatic diseases at the cellular level. Our device offers a practical solution for studying chronic alcohol exposure, providing a reliable platform for cellular research. This innovative tool holds promise for advancing our understanding of the molecular processes involved in chronic alcohol-mediated hepatic diseases. Future research avenues should explore broader applications and potential implications for predicting and treating alcohol-related illnesses.

3.
Acta Trop ; 255: 107203, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38604326

ABSTRACT

BACKGROUND: Alveolar Echinococcosis (AE) is a malignant zoonotic disease caused by Echinococcus multilocularis infection. Considering whether the lesion is accompanied by vascular invasion (VI) is crucial for treatment strategies. A cost-effective and convenient clinical diagnostic method is urgently needed to supplement current techniques. Consequently, we detected soluble CD155 (sCD155) as a potential biomarker for diagnosing VI in hepatic alveolar echinococcosis (HAE). METHODS: Blood samples were from 42 AE patients and 49 healthy controls (HCs). Based on the computed tomography (CT) and contrast-enhanced CT, AE patients were further categorized into HAE with VI (VIAE; 27 cases) and HAE without VI (NVAE; 15 cases). The sCD155 concentration was measured by an enzyme-linked immunosorbent assay (ELISA). Correlations between sCD155 expression levels and clinicopathological features of AE patients were analyzed using SPSS and GraphPad Prism software. RESULTS: The sCD155 concentrations in AE patients were significantly higher than in HCs. The serum sCD155 level significantly differed between the VIAE and NVAE groups. The univariate analysis showed that VI of AE was significantly correlated with the sCD155 level when the sCD155 was greater than 11 ng/mL. After adjusting for potential confounding factors, the multivariable analysis showed that sCD155 had an independent effect on VI of HAE. The receiver operating characteristic (ROC) curve showed that sCD155 could differentially diagnose VI of HAE at the cut-off value of 11.08 ng/mL with an area under the curve (AUC) value of 0.75. The sensitivity and specificity were 74.07 % and 66.67 %, respectively; the positive and negative predictive values were 74.07 % and 60.00 %, respectively. CONCLUSION: The sCD155 could be a VI biomarker for HAE. Elevated sCD155 levels are indicative of an increased likelihood of concomitant VI in HAE patients, necessitating a thorough evaluation of vascular impairment and the formulation of individualized management strategies.


Subject(s)
Biomarkers , Echinococcosis, Hepatic , Adult , Female , Humans , Male , Middle Aged , Biomarkers/blood , Echinococcosis, Hepatic/diagnosis , Echinococcosis, Hepatic/blood , Echinococcus multilocularis , Enzyme-Linked Immunosorbent Assay/methods , ROC Curve , Tomography, X-Ray Computed
4.
Phytochemistry ; 221: 114045, 2024 May.
Article in English | MEDLINE | ID: mdl-38460781

ABSTRACT

Plants attract beneficial insects and promote pollination by releasing floral scents. Salvia miltiorrhiza, as an insect-pollinated flowering plant, which has been less studied for its floral aroma substances. This study revealed that S. miltiorrhiza flowers produce various volatile terpenoids, including five monoterpenes and ten sesquiterpenes, with the sesquiterpene compound (E)-ß-caryophyllene being the most abundant, accounting for 28.1% of the total volatile terpenoids. Y-tube olfactometer experiments were conducted on the primary pollinator of S. miltiorrhiza, the Apis ceranas. The results indicated that (E)-ß-caryophyllene compound had an attractive effect on the Apis ceranas. By comparing the homologous sequences with the genes of (E)-ß-caryophyllene terpene synthases in other plants, the SmTPS1 gene was selected for further experiment. Subcellular localization experiments showed SmTPS1 localized in the cytoplasm, and its in vitro enzyme assay revealed that it could catalyze FPP into ß-Elemene, (E)-ß-caryophyllene and α-Humulene. Overexpression of SmTPS1 in S. miltiorrhiza resulted in a 5.29-fold increase in gene expression. The GC-MS analysis revealed a significant increase in the concentration of (E)-ß-caryophyllene in the transgenic plants, with levels 2.47-fold higher compared to the empty vector plants. Furthermore, Y-tube olfactometer experiments showed that the transgenic plants were significantly more attractive to Apis ceranas compared to the empty vector plants. Co-expression analysis suggested that four SmMYCs (SmMYC1, SmMYC5, SmMYC10, and SmMYC11) may be involved in the transcriptional regulation of SmTPS1. The yeast one-hybrid screen and the Dual luciferase assay indicated that SmMYC10 positively regulates the expression of SmTPS1. In conclusion, this study lays a foundation for the functional analysis and transcriptional regulation of terpene synthase genes in S. miltiorrhiza.


Subject(s)
Alkyl and Aryl Transferases , Polycyclic Sesquiterpenes , Salvia miltiorrhiza , Bees , Animals , Salvia miltiorrhiza/metabolism , Odorants , Terpenes/metabolism , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Flowers/metabolism , Gene Expression Regulation, Plant
5.
Environ Res ; 251(Pt 1): 118635, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38462083

ABSTRACT

Carbon nanosol (CNS) is a carbon-based nanomaterial capable of promoting plant growth while the underlying mechanism involved in this process remains unknown. This study demonstrates that CNS promotes rice seedling growth under restricted concentrations. Macroelement transporter mutants were investigated to further investigate the CNS-mediated promotion of rice seedling growth. The genetic and physiological findings revealed that nitrate transporter 1.1B (NRT1.1B) and ammonium transporter 1 (AMT1) mutants inhibited the CNS-induced growth development of rice seedlings, whereas potassium transporter (AKT1) and phosphate transporter 8 (PT8) did not exhibit any inhibitory effects. Further investigations demonstrated the inhibition of CNS-mediated growth promotion via glutamine synthetase 1;1 (gs1;1) mutants. Additionally, the administration of CNS resulted in enhanced accumulation of chlorophyll in plants, and the promotion of CNS-induced growth was inhibited by yellow-green leaf 8 (YGL8) mutants and the chlorophyll biosynthetic gene divinyl reductase (DVR) mutants. According to these findings, the CNS promotes plant growth by stimulating chlorophyll biosynthesis. Furthermore, the presence of CNS enhanced the ability of rice to withstand blast, sheath blight (ShB), and bacterial blight. The nrt1.1b, amt1, dvr, and ygl8 mutants did not exhibit a broad spectrum effect. The positive regulation of broad-spectrum resistance in rice by GS1;1 suggests the requirement of N assimilation for CNS-mediated broad-spectrum resistance. In addition, an in vitro assay demonstrated that CNS inhibits the growth of pathogens responsible for blast, ShB, and bacterial blight, namely Magnaporthe oryzae, Rhizoctonia solani AG1-IA, and Xanthomonas oryzae pv. Oryzae, respectively. CNS application may also induce broad-spectrum resistance against bacterial and fungal pathogens, indicating that in addition to its antifungal and antibacterial properties, CNS application may also stimulate N assimilation. Collectively, the results indicate that CNS may be a potential nano-therapeutic agent for improved plant growth promotion while also providing broad-spectrum resistance.


Subject(s)
Carbon , Oryza , Oryza/microbiology , Oryza/growth & development , Oryza/drug effects , Oryza/genetics , Carbon/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Chlorophyll/metabolism , Seedlings/growth & development , Seedlings/drug effects , Seedlings/microbiology , Disease Resistance/drug effects
6.
Langmuir ; 40(10): 5391-5400, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38416015

ABSTRACT

We present an innovative solvent-free micromolding technique for rapidly fabricating complex polymer microparticles with three-dimensional (3D) shapes utilizing a surface tension-induced dipping process. Our fabrication process involves loading a photocurable solution into micromolds through mold dipping. The loaded solution, induced by surface tension, undergoes spatial deformation upon mold removal caused by surface forces, ultimately acquiring an anisotropic shape before photopolymerization. Results show that the amount of photocurable solution loaded depends on the degree of capillary penetration, which can be adjusted by varying the dipping time and mold height. It enables the production of polymer particles with precisely controlled 3D shapes without diluting them with volatile organic solvents. Sequential micromolding enables the spatial stacking of the polymer domain through a bottom-up approach, facilitating the creation of complex multicompartmental microparticles with independently controlled compartments. Finally, we demonstrated the successful simultaneous conjugation of multiple model-fluorescent proteins through the biofunctionalization of microparticles, indicating functional stability and effective conjugation of hydrophilic molecules such as proteins. We also extend our capacity to create bicompartmental microparticles with distinct functionalities in each compartment, revealing spatially controlled functional structures. In summary, these findings demonstrate a straightforward, rapid, and reliable method for producing highly uniform complex particles with precise control over the 3D shape and compartmentalization, all accomplished without the use of organic solvents.

7.
Chemistry ; 30(9): e202303092, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38057492

ABSTRACT

While great achievements have been made in the development of mechanically robust nanocomposite hydrogels, incorporating multiple interactions on the bases of two demensional inorganic cross-linkers to construct self-strengthening hydrogels has rarely been investigated. To this end, we propose here a new method for the coupling the dynamic covalent bonds and non-covalent interactions within a pseudo double-network system. The pseudo first network, formed through the Schiff Base reation between Tris-modified layered double hydroxides (Tris-LDHs) and oxidized dextran (ODex), is linked to the second network built upon non-covalent interactions between Tris-LDHs and poly(acrylamide-co-2-acrylamido-2-methyl-propanesulfonate) (p-(AM-co-AMPS). The swelling and mechanical properties of the resulting hydrogels have been investigated as a function of the ODex and AMPS contents. The as-prepared hydrogel can swell to 420 times of its original size and retain more than 99.9 wt.% of water. Mechanical tests show that the hydrogel can bear 90 % of compression and is able to be stretched to near 30 times of its original length. Cyclic tensile tests reveal that the hydrogels are capable of self-strengthening after mechanical training. The unique energy dissipation mechanism based on the dynamic covalent and non-covalent interactions is considered to be responsible for the outstanding swelling and mechanical performances.

8.
Nat Prod Bioprospect ; 13(1): 53, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38010490

ABSTRACT

Sarcandra glabra (Thunb.) Nakai is a perennial evergreen herb categorised within the Sarcandra Gardner genus under the Chloranthaceae family. Indigenous to tropical and subtropical regions of East Asia and India, this species is extensively distributed across China, particularly in the southern regions (Sichuan, Yunnan, and Jiangxi). In addition to its high ornamental value, S. glabra has a rich history of use in traditional Chinese medicine, evident through its empirical prescriptions for various ailments like pneumonia, dysentery, fractures, bruises, numbness, amenorrhea, rheumatism, and other diseases. Besides, modern pharmacological studies have revealed various biological activities, such as antitumour, anti-bacterial, anti-viral anti-inflammatory and immunomodulatory effects. The diverse chemical constituents of S. glabra have fascinated natural product researchers since the 1900s. To date, over 400 compounds including terpenoids, coumarins, lignans, flavonoids, sterols, anthraquinones, organic acids, and organic esters have been isolated and characterised, some featuring unprecedented structures. This review comprehensively examines the current understanding of S. glabra's phytochemistry and pharmacology, with emphasis on the chemistry and biosynthesis of its unique chemotaxonomic marker, the lindenane-type sesquiterpenoids.

9.
Ying Yong Sheng Tai Xue Bao ; 34(6): 1474-1482, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37694408

ABSTRACT

The rapid urbanization adversely affects landscape pattern of mountainous cities. It is of great practical significance to explore the spatial and temporal evolution of ecological networks in mountainous areas to achieve regional ecological security. Taking Qianshan City in Anhui Province as an example, based on the land use data in 2012 and 2020, we simulated the land use situation in 2036 with PLUS model, and constructed the ecological networks in 2020 and 2036, respectively. We further analyzed its spatial and temporal evolution characteristics and explored the optimization path of ecological network. The results showed that the scale of various land use types in Qianshan City would change little from 2020 to 2036. The construction land would be centered on the built-up area, expanding in a point and block shape to the surrounding area. The ecological space would be continuously squeezed and encroached. The overall complexity and connectivity of ecological networks in Qianshan City would increase. The number and area of ecological source sites would increase, expanding spatially to the southwest and northeast. The overall density and number of ecological corridors would increase, with a lack of ecological corridor connections in the east-west direction, which need urgent improvement. The stability of ecological networks could be improved through three major measures, including protection and restoration of source sites, optimization and cultivation of corridors, and zoning control.


Subject(s)
City Planning , Urbanization , Cities , Computer Simulation
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(3): 643-648, 2023 Jun.
Article in Chinese | MEDLINE | ID: mdl-37356920

ABSTRACT

OBJECTIVE: To explore the expression level of exosome derived miR-181b-5p in different disease stages of children with acute lymphoblastic leukemia and its relationship with clinical characteristics. METHODS: Bone marrow plasma samples of 86 children with ALL were collected. Exosomes were extracted by exosome extraction kit, and RNA in exosomes was extracted by TRIzol method. The levels of miR-181b-5p in the blood plasma exosomes of the patients in the newly diagnosed group, relapse group, remission group and control group were detected by qRT- PCR. The difference of miR-181b-5p expression level in each group was compared and analyzed, and the relationship between miR-181b-5p expression level and clinical characteristics was analyzed. RESULTS: The expression level of exosomal miR-181b-5p in the newly diagnosed group and the relapsed group was significantly lower than that in the remission group and the control group (P< 0.05). The expression level of exosomal miR-181b-5p in T-ALL children was higher than that in B-ALL children (P<0.05). The expression level of plasma exosomal miR-181b-5p in male children was higher than that in female children (P<0.01). CONCLUSION: Exosome derived miR-181b-5p changes dynamically in the course of ALL children, and can be used as a marker miRNA to monitor disease status. Exosomes can transmit information in the tumor microenvironment and serve as a potential carrier for biomolecular targeted therapy.


Subject(s)
Exosomes , MicroRNAs , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Male , Female , Child , Exosomes/genetics , Exosomes/metabolism , Clinical Relevance , MicroRNAs/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Tumor Microenvironment
13.
Front Microbiol ; 14: 1111965, 2023.
Article in English | MEDLINE | ID: mdl-36876084

ABSTRACT

Peanut stem rot, caused by Sclerotium rolfsii, considerably affects crop productivity. Application of chemical fungicides harms the environment and induces drug resistance. Biological agents are valid and eco-friendly alternatives to chemical fungicides. Bacillus spp. are important biocontrol agents that are now widely used against several plant diseases. This study aimed to evaluate the efficacy and mechanism of a potential biocontrol agent Bacillus sp. for controlling peanut stem rot caused by S. rolfsii. Here, we isolated a strain of Bacillus from pig biogas slurry that considerably inhibits the radial growth of S. rolfsii. The strain CB13 was identified as Bacillus velezensis on the basis of morphological, physiological, biochemical characteristics and phylogenetic trees based on the 16S rDNA and gyrA, gyrB, and rpoB gene sequences. The biocontrol efficacy of CB13 was evaluated on the basis of colonization ability, induction of defense enzyme activity, and soil microbial diversity. The control efficiencies of B. velezensis CB13-impregnated seeds in four pot experiments were 65.44, 73.33, 85.13, and 94.92%. Root colonization was confirmed through green fluorescent protein (GFP)-tagging experiments. The CB13-GFP strain was detected in peanut root and rhizosphere soil, at 104 and 108 CFU/g, respectively, after 50 days. Furthermore, B. velezensis CB13 enhanced the defense response against S. rolfsii infection by inducing defense enzyme activity. MiSeq sequencing revealed a shift in the rhizosphere bacterial and fungal communities in peanuts treated with B. velezensis CB13. Specifically, the treatment enhanced disease resistance by increasing the diversity of soil bacterial communities in peanut roots, increasing the abundance of beneficial communities, and promoting soil fertility. Additionally, real-time quantitative polymerase chain reaction results showed that B. velezensis CB13 stably colonized or increased the content of Bacillus spp. in the soil and effectively inhibited S. rolfsii proliferation in soil. These findings indicate that B. velezensis CB13 is a promising agent for the biocontrol of peanut stem rot.

14.
Biomedicines ; 11(3)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36979751

ABSTRACT

Self-assembling three-dimensional organoids that do not rely on an exogenous scaffold but maintain their native cell-to-cell and cell-to-matrix interactions represent a promising model in the field of tendon tissue engineering. We have identified dermal fibroblasts (DFs) as a potential cell type for generating functional tendon-like tissue. The glucocorticoid dexamethasone (DEX) has been shown to regulate cell proliferation and facilitate differentiation towards other mesenchymal lineages. Therefore, we hypothesized that the administration of DEX could reduce excessive DF proliferation and thus, facilitate the tenogenic differentiation of DFs using a previously established 3D organoid model combined with dose-dependent application of DEX. Interestingly, the results demonstrated that DEX, in all tested concentrations, was not sufficient to notably induce the tenogenic differentiation of human DFs and DEX-treated organoids did not have clear advantages over untreated control organoids. Moreover, high concentrations of DEX exerted a negative impact on the organoid phenotype. Nevertheless, the expression profile of tendon-related genes of untreated and 10 nM DEX-treated DF organoids was largely comparable to organoids formed by tendon-derived cells, which is encouraging for further investigations on utilizing DFs for tendon tissue engineering.

15.
ACS Appl Mater Interfaces ; 15(9): 12078-12087, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36843294

ABSTRACT

The NiCo alloy is one of the most promising alternatives to the noble-metal electrocatalysts for the hydrogen evolution reaction (HER); however, its performance is largely restricted by insufficient active sites and low surface area. Here, we fabricated a hierarchical hollow carbon cage supported NiCo alloy (denoted as HC NiCo/C) and a bulk NiCo alloy (denoted as NiCo) by reduction of a partially ZIF-67 etched ZIF-67@NiCo-LDH (LDH = layered double hydroxide) precursor and a fully ZIF-67 etched NiCo-LDH precursor, respectively. The as-prepared HC NiCo/C, in which the Ni29Co71 alloy nanocrystals with an average 6 nm size were encapsulated in graphitic carbon layers, provided a vastly increased electrochemically active surface area (ca. 13 times than the NiCo) and abundant catalytic active sites, which resulted in a higher HER performance with an overpotential of 99 mV than the 198 mV for NiCo at 10 mA cm-2. Detailed experimental results suggested that only the HC NiCo/C possessed the active alloy surface composed of unsaturated Ni0 and Co0 atoms, and both the metal-support interaction and alloying effect influenced the electronic structure of Co and Ni in HC NiCo/C, whereas the NiCo exhibited pure Ni surface. Theoretical calculations further revealed the Ni29Co71 alloy surface in HC NiCo/C possessed the appropriate adsorption energy of the intermediate state (adsorbed H*). This work provided new insight into the construction of the stable small-sized bimetallic alloy nanocatalysts by regulating the reduction precursors.

16.
Diagnostics (Basel) ; 13(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36832107

ABSTRACT

In this study, we looked at the viability of utilizing serum to differentiate between gallbladder (GB) stones and GB polyps using Surface-enhanced Raman spectroscopy (SERS), which has the potential to be a quick and accurate means of diagnosing benign GB diseases. Rapid and label-free SERS was used to conduct the tests on 148 serum samples, which included those from 51 patients with GB stones, 25 patients with GB polyps and 72 healthy persons. We used an Ag colloid as a Raman spectrum enhancement substrate. In addition, we employed orthogonal partial least squares discriminant analysis (OPLS-DA) and principal component linear discriminant analysis (PCA-LDA) to compare and diagnose the serum SERS spectra of GB stones and GB polyps. The diagnostic results showed that the sensitivity, specificity, and area under curve (AUC) values of the GB stones and GB polyps based on OPLS-DA algorithm reached 90.2%, 97.2%, 0.995 and 92.0%, 100%, 0.995, respectively. This study demonstrated an accurate and rapid means of combining serum SERS spectra with OPLS-DA to identify GB stones and GB polyps.

17.
Mol Plant Pathol ; 24(3): 221-231, 2023 03.
Article in English | MEDLINE | ID: mdl-36633167

ABSTRACT

Sheath blight (ShB) severely threatens rice cultivation and production; however, the molecular mechanism of rice defence against ShB remains unclear. Screening of transposon Ds insertion mutants identified that Calcineurin B-like protein-interacting protein kinase 31 (CIPK31) mutants were more susceptible to ShB, while CIPK31 overexpressors (OX) were less susceptible. Sequence analysis indicated two haplotypes of CIPK31: Hap_1, with significantly higher CIPK31 expression, was less sensitive to ShB than the Hap_2 lines. Further analyses showed that the NAF domain of CIPK31 interacted with the EF-hand motif of respiratory burst oxidase homologue (RBOHA) to inhibit RBOHA-induced H2 O2 production, and RBOHA RNAi plants were more susceptible to ShB. These data suggested that the CIPK31-mediated increase in resistance is not associated with RBOHA. Interestingly, the study also found that CIPK31 interacted with catalase C (CatC); cipk31 mutants accumulated less H2 O2 while CIPK31 OX accumulated more H2 O2 compared to the wild-type control. Further analysis showed the interaction of the catalase domain of CatC with the NAF domain of CIPK31 by which CIPK31 inhibits CatC activity to accumulate more H2 O2 .


Subject(s)
Oryza , Oryza/genetics , Catalase/genetics , Reactive Oxygen Species , Protein Kinases , Calcineurin , Plant Diseases , Rhizoctonia/physiology
18.
Plant Cell Environ ; 46(4): 1249-1263, 2023 04.
Article in English | MEDLINE | ID: mdl-36457051

ABSTRACT

Phytochrome (Phy)-regulated light signalling plays important roles in plant growth, development, and stress responses. However, its function in rice defence against sheath blight disease (ShB) remains unclear. Here, we found that PhyB mutation or shade treatment promoted rice resistance to ShB, while resistance was reduced by PhyB overexpression. Further analysis showed that PhyB interacts with phytochrome-interacting factor-like 15 (PIL15), brassinazole resistant 1 (BZR1), and vascular plant one-zinc-finger 2 (VOZ2). Plants overexpressing PIL15 were more susceptible to ShB in contrast to bzr1-D-overexpressing plants compared with the wild-type, suggesting that PhyB may inhibit BZR1 to negatively regulate rice resistance to ShB. Although BZR1 is known to regulate brassinosteroid (BR) signalling, the observation that BR signalling negatively regulated resistance to ShB indicated an independent role for BZR1 in controlling rice resistance. It was also found that the BZR1 ligand NAC028 positively regulated resistance to ShB. RNA sequencing showed that cinnamyl alcohol dehydrogenase 8B (CAD8B), involved in lignin biosynthesis was upregulated in both bzr1-D- and NAC028-overexpressing plants compared with the wild-type. Yeast-one hybrid, ChIP, and transactivation assays demonstrated that BZR1 and NAC028 activate CAD8B directly. Taken together, the analyses demonstrated that PhyB-mediated light signalling inhibits the BZR1-NAC028-CAD8B pathway to regulate rice resistance to ShB.


Subject(s)
Oryza , Phytochrome , Phytochrome B/metabolism , Oryza/genetics , Phytochrome/metabolism , Brassinosteroids/metabolism , Gene Expression Regulation, Plant
19.
Chem Eng J ; 455: 140753, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36506703

ABSTRACT

The COVID-19 pandemic and the resulting supply chain disruption have rekindled crucial needs for safe storage and transportation of essential items. Despite recent advances, existing temperature monitoring technologies for cold chain management fall short in reliability, cost, and flexibility toward customized cold chain management for various products with different required temperature. In this work, we report a novel capsule-based colorimetric temperature monitoring system with precise and readily tunable temperature ranges. Triple emulsion drop-based microfluidic technique enables rapid production of monodisperse microcapsules with an interstitial phase-change oil (PCO) layer with precise control over its dimension and composition. Liquid-solid phase transition of the PCO layer below its freezing point triggers the release of the encapsulated payload yielding drastic change in color, allowing user-friendly visual monitoring in a highly sensitive manner. Simple tuning of the PCO layer's compositions can further broaden the temperature range in a precisely controlled manner. The proposed simple scheme can readily be formulated to detect both temperature rise in the frozen environment and freeze detection as well as multiple temperature monitoring. Combined, these results support a significant step forward for the development of customizable colorimetric monitoring of a broad range of temperatures with precision.

20.
China Tropical Medicine ; (12): 1030-2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1016693

ABSTRACT

@#Abstract: Objective To prepare a microparticle delivery system that regulates the release rate of extracellular vesicles (EVs), and to exert long-term enhancement of liver cell proliferation after only one intervention. Methods EVs was extracted by differential centrifugation. The structure of the EVs was observed by transmission electron microscopy and the membrane marker protein of EVs was detected by Western blotting. EVs-PLA microspheres with "core-shell" structure were prepared by emulsion-solvent evaporation method. Scanning and transmission electron microscopy were used to detect the morphology of EVs-PLA microspheres and EVs. The release test detected the release behavior of EVs in EVs-PLA microspheres. Scanning electron microscopy was used to detect the morphological changes of EVs-PLA microspheres at 8 weeks of release. EVs-PLA microspheres were co-cultured with hepatocytes, and Phalloidin/DAPI staining was used to observe the cell morphology and evaluate the cytotoxicity of the microspheres. CCK8-test was used to evaluate the cell proliferation activity. Western blot analysis was used to detect extracellular vesicles membrane marker protein expression. Results Comparing the ability of hepatocyte proliferation in the group treated with EVs-PLA microspheres and the control group, it was found that EVs-PLA microspheres did not cause cell apoptosis and mutation in cell structure, had biocompatibility and no cytotoxicity. The EVs-PLA microspheres with "core-shell" structure regulated the release behavior of EVs, which can continuously release EVs, exerting a continuous biological role in promoting hepatocyte proliferation after a single intervention. Conclusions The EVs-PLA microspheres can control-release EVs and promote hepatocyte proliferation continuously after a single intervention, providing a reference for further exploration of EVs-loaded delivery systems in promoting liver regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL