Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Pathol ; 263(3): 347-359, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734878

ABSTRACT

Vascular permeability is temporarily heightened during inflammation, but excessive inflammation-associated microvascular leakage can be detrimental, as evidenced in the inflamed lung. Formylated peptides regulate vascular leakage indirectly via formylated peptide receptor-1 (FPR1)-mediated recruitment and activation of neutrophils. Here we identify how the GTPase-activating protein ARAP3 protects against formylated peptide-induced microvascular permeability via endothelial cells and neutrophils. In vitro, Arap3-/- endothelial monolayers were characterised by enhanced formylated peptide-induced permeability due to upregulated endothelial FPR1 and enhanced vascular endothelial cadherin internalisation. In vivo, enhanced inflammation-associated microvascular leakage was observed in Arap3-/- mice. Leakage of plasma protein into the lungs of Arap3-/- mice increased within hours of formylated peptide administration. Adoptive transfer experiments indicated this was dependent upon ARAP3 deficiency in both immune and non-immune cells. Bronchoalveolar lavages of formylated peptide-challenged Arap3-/- mice contained neutrophil extracellular traps (NETs). Pharmacological inhibition of NET formation abrogated excessive microvascular leakage, indicating a critical function of NETs in this context. The observation that Arap3-/- mice developed more severe influenza suggests these findings are pertinent to pathological situations characterised by abundant formylated peptides. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Capillary Permeability , Endothelial Cells , Mice, Knockout , Neutrophils , Animals , Neutrophils/metabolism , Capillary Permeability/drug effects , Humans , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/pathology , Mice , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Mice, Inbred C57BL , Extracellular Traps/metabolism , Lung/metabolism , Lung/pathology , Lung/blood supply
2.
Sci Rep ; 13(1): 18237, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880240

ABSTRACT

Norbin is an adaptor protein that binds numerous G protein-coupled receptors (GPCRs), is highly expressed in neurons, and is essential for a functioning nervous system in rodent models. Yet, beyond its control of neurite outgrowth and synaptic plasticity, few cellular roles of Norbin have been investigated to date. Furthermore, while Norbin is known to regulate the steady-state cell surface levels of several GPCRs, only in one case has the protein been shown to control the agonist-induced receptor internalisation which serves to attenuate GPCR signalling. Here, we generated a Norbin-deficient PC12 cell line which enabled us to study both the cellular functions of Norbin and its roles in GPCR trafficking and signalling. We show that Norbin limits cell size and spreading, and is required for the growth, viability and cell cycle progression of PC12 cells. We also found that Norbin regulates both the steady-state surface level and agonist-induced internalisation of the GPCR sphingosine-1-phosphate receptor 1 (S1PR1) in these cells, suggesting that its role in agonist-dependent GPCR trafficking is more widespread than previously appreciated. Finally, we show that Norbin limits the S1P-stimulated activation of Akt and p38 Mapk, and is required for the activation of Erk in PC12 cells. Together, our findings provide a better understanding of the cellular functions of Norbin and its control of GPCR trafficking.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Animals , Rats , Cell Cycle , PC12 Cells , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Sphingosine-1-Phosphate Receptors , Cell Survival/genetics
3.
Front Immunol ; 14: 1180886, 2023.
Article in English | MEDLINE | ID: mdl-37383235

ABSTRACT

Introduction: Rac-GTPases and their Rac-GEF activators play important roles in neutrophil-mediated host defence. These proteins control the adhesion molecules and cytoskeletal dynamics required for neutrophil recruitment to inflamed and infected organs, and the neutrophil effector responses that kill pathogens. Methods: Here, we used live cell TIRF-FRET imaging in neutrophils from Rac-FRET reporter mice with deficiencies in the Rac-GEFs Dock2, Tiam1 or Prex1/Vav1 to evaluate if these proteins activate spatiotemporally distinct pools of Rac, and to correlate patterns of Rac activity with the neutrophil responses they control. Results: All the GEFs were required for neutrophil adhesion, and Prex1/Vav1 were important during spreading and for the velocity of migration during chemotaxis. However, Dock2 emerged as the prominent regulator of neutrophil responses, as this GEF was required for neutrophil polarisation and random migration, for migration velocity during chemokinesis, for the likelihood to migrate and for the speed of migration and of turning during chemotaxis, as well as for rapid particle engulfment during phagocytosis. We identified characteristic spatiotemporal patterns of Rac activity generated by Dock2 which correlate with the importance of the Rac-GEF in these neutrophil responses. We also demonstrate a requirement for Dock2 in neutrophil recruitment during aseptic peritonitis. Discussion: Collectively, our data provide a first direct comparison of the pools of Rac activity generated by different types of Rac-GEFs, and identify Dock2 as a key regulator of polarisation, migration and phagocytosis in primary neutrophils.


Subject(s)
GTPase-Activating Proteins , Guanine Nucleotide Exchange Factors , Neutrophils , Phagocytosis , Animals , Mice , Chemotaxis , Cytoskeleton , Guanine Nucleotide Exchange Factors/metabolism , GTPase-Activating Proteins/metabolism
4.
Front Immunol ; 13: 888415, 2022.
Article in English | MEDLINE | ID: mdl-36090969

ABSTRACT

Host defense against bacterial and fungal infections diminishes with age. In humans, impaired neutrophil responses are thought to contribute to this decline. However, it remains unclear whether neutrophil responses are also impaired in old mice. Here, we investigated neutrophil function in old mice, focusing on responses primed by lipopolysaccharide (LPS), an endotoxin released by gram-negative bacteria like E. coli, which signals through toll-like receptor (TLR) 4. We show that old mice have a reduced capacity to clear pathogenic E. coli during septic peritonitis. Neutrophil recruitment was elevated during LPS-induced but not aseptic peritonitis. Neutrophils from old mice showed reduced killing of E. coli. Their reactive oxygen species (ROS) production was impaired upon priming with LPS but not with GM-CSF/TNFα. Phagocytosis and degranulation were reduced in a partially LPS-dependent manner, whereas impairment of NET release in response to S. aureus was independent of LPS. Unexpectedly, chemotaxis was normal, as were Rac1 and Rac2 GTPase activities. LPS-primed activation of Erk and p38 Mapk was defective. PIP3 production was reduced upon priming with LPS but not with GM-CSF/TNFα, whereas PIP2 levels were constitutively low. The expression of 5% of neutrophil proteins was dysregulated in old age. Granule proteins, particularly cathepsins and serpins, as well as TLR-pathway proteins and membrane receptors were upregulated, whereas chromatin and RNA regulators were downregulated. The upregulation of CD180 and downregulation of MyD88 likely contribute to the impaired LPS signaling. In summary, all major neutrophil responses except chemotaxis decline with age in mice, particularly upon LPS priming. This LPS/TLR4 pathway dependence resolves previous controversy regarding effects of age on murine neutrophils and confirms that mice are an appropriate model for the decline in human neutrophil function.


Subject(s)
Bacterial Infections , Peritonitis , Animals , Bacterial Infections/metabolism , Escherichia coli/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Lipopolysaccharides/pharmacology , Mice , Neutrophils/metabolism , Peritonitis/metabolism , Staphylococcus aureus/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptors/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
Cell Death Dis ; 12(4): 296, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33741905

ABSTRACT

Persistent neutrophilic inflammation drives host damage in autoimmune diseases that are characterized by abundant immune complexes. Insoluble immune complexes (iICs) potently activate pro-inflammatory neutrophil effector functions. We and others have shown that iICs also promote resolution of inflammation via stimulation of neutrophil apoptosis. We demonstrate here that iICs trigger FcγRIIa-dependent neutrophil macropinocytosis, leading to the rapid uptake, and subsequent degradation of iICs. We provide evidence that concurrent iIC-induced neutrophil apoptosis is distinct from phagocytosis-induced cell death. First, uptake of iICs occurs by FcγRII-stimulated macropinocytosis, rather than phagocytosis. Second, production of reactive oxygen species, but not iIC-internalization is a pre-requisite for iIC-induced neutrophil apoptosis. Our findings identify a previously unknown mechanism by which neutrophils can remove pro-inflammatory iICs from the circulation. Together iIC clearance and iIC-induced neutrophil apoptosis may act to prevent the potential escalation of neutrophilic inflammation in response to iICs.


Subject(s)
Antigen-Antibody Complex/metabolism , Inflammation/immunology , Neutrophils/immunology , Apoptosis , Humans
6.
J Immunol ; 203(6): 1579-1588, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31427445

ABSTRACT

Neutrophils are abundant circulating leukocytes that are rapidly recruited to sites of inflammation in an integrin-dependent fashion. Contrasting with the well-characterized regulation of integrin activation, mechanisms regulating integrin inactivation remain largely obscure. Using mouse neutrophils, we demonstrate in this study that the GTPase activating protein ARAP3 is a critical regulator of integrin inactivation; experiments with Chinese hamster ovary cells indicate that this is not restricted to neutrophils. Specifically, ARAP3 acts in a negative feedback loop downstream of PI3K to regulate integrin inactivation. Integrin ligand binding drives the activation of PI3K and of its effectors, including ARAP3, by outside-in signaling. ARAP3, in turn, promotes localized integrin inactivation by negative inside-out signaling. This negative feedback loop reduces integrin-mediated PI3K activity, with ARAP3 effectively switching off its own activator, while promoting turnover of substrate adhesions. In vitro, ARAP3-deficient neutrophils display defective PIP3 polarization, adhesion turnover, and transendothelial migration. In vivo, ARAP3-deficient neutrophils are characterized by a neutrophil-autonomous recruitment defect to sites of inflammation.


Subject(s)
Inflammation/metabolism , Integrins/metabolism , Neutrophils/metabolism , Animals , CHO Cells , Cell Adhesion/physiology , Cell Line , Cricetulus , GTPase-Activating Proteins/metabolism , Mice , Neutrophil Infiltration/physiology , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/physiology
7.
Small GTPases ; 10(3): 187-195, 2019 05.
Article in English | MEDLINE | ID: mdl-28328290

ABSTRACT

Neutrophils are short-lived, abundant peripheral blood leukocytes that provide a first line of defense against bacterial and fungal infections while also being a key part of the inflammatory response. Chemokines induce neutrophil recruitment to inflammatory sites, where neutrophils perform several diverse functions that are aimed at fighting infections. Neutrophil effector functions are tightly regulated processes that are governed by an array of intracellular signaling pathways and initiated by receptor-ligand binding events. Dysregulated neutrophil activation can result in excessive inflammation and host damage, as is evident in several autoimmune diseases. Rho family small GTPases and agonist-activated phosphoinositide 3-kinases (PI3Ks) represent 2 classes of key regulators of the highly specialized neutrophil. Here we review cross-talk between these important signaling intermediates in the context of neutrophil functions. We include PI3K-dependent activation of Rho family small GTPases and of their guanine nucleotide exchange factors and GTPase activating proteins, as well as Rho GTPase-dependent regulation of PI3K.


Subject(s)
Class Ib Phosphatidylinositol 3-Kinase/metabolism , Neutrophils/enzymology , Signal Transduction/physiology , rho GTP-Binding Proteins/metabolism , Animals , Humans
8.
J Leukoc Biol ; 105(1): 93-100, 2019 01.
Article in English | MEDLINE | ID: mdl-30211955

ABSTRACT

Neutrophils are short-lived, terminally differentiated leukocytes that form an essential part of host immunity and play a key role in acute and chronic inflammation. The analysis of these important cells is hindered by the fact that neutrophils are not amenable to culture, transfection, or transduction. Conditionally HoxB8-immortalized mouse hematopoietic progenitors are suitable for in vitro differentiation of a range of myeloid cells, including neutrophils. Integrins and FcγRs are cell surface receptors, the ligation of which is required for a range of neutrophil functions that are important in health and disease. We show here that HoxB8 neutrophils express major neutrophil integrins and FcγRs. They respond to FcγR and integrin stimulation in a manner that is comparable with primary neutrophils, in terms of intracellular signaling. HoxB8 neutrophils also perform a range of FcγR/integrin-dependent neutrophil functions, including, generation of reactive oxygen species, degranulation, and chemotaxis. Our findings suggest that HoxB8 neutrophils represent a faithful experimental model system for the analysis of Fc and integrin receptor-dependent neutrophil functions.


Subject(s)
Homeodomain Proteins/metabolism , Integrins/metabolism , Neutrophils/metabolism , Receptors, IgG/metabolism , Signal Transduction , Animals , Antigen-Antibody Complex/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Degranulation , Chemotaxis , Mice, Inbred C57BL , Neutrophils/cytology , Neutrophils/physiology , Reactive Oxygen Species/metabolism
9.
Biochem Soc Trans ; 46(3): 649-658, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29743277

ABSTRACT

Inflammation is a complex biological response that serves to protect the body's tissues following harmful stimuli such as infection, irritation or injury and initiates tissue repair. At the start of an inflammatory response, pro-inflammatory mediators induce changes in the endothelial lining of the blood vessels and in leukocytes. This results in increased vascular permeability and increased expression of adhesion proteins, and promotes adhesion of leukocytes, especially neutrophils to the endothelium. Adhesion is a prerequisite for neutrophil extravasation and chemoattractant-stimulated recruitment to inflammatory sites, where neutrophils phagocytose and kill microbes, release inflammatory mediators and cross-talk with other immune cells to co-ordinate the immune response in preparation for tissue repair. Many signalling proteins are critically involved in the complex signalling processes that underpin the inflammatory response and cross-talk between endothelium and leukocytes. As key regulators of cell-cell and cell-substratum adhesion, small GTPases (guanosine triphosphatases) act as important controls of neutrophil-endothelial cell interactions as well as neutrophil recruitment to sites of inflammation. Here, we summarise key processes that are dependent upon small GTPases in leukocytes during these early inflammatory events. We place a particular focus on the regulation of integrin-dependent events and their control by Rho and Rap family GTPases as well as their regulators during neutrophil adhesion, chemotaxis and recruitment.


Subject(s)
Cell Communication , Endothelium/pathology , Inflammation/pathology , Leukocytes/pathology , Monomeric GTP-Binding Proteins/metabolism , Animals , Endothelium/metabolism , Humans , Inflammation Mediators/metabolism , Integrins/metabolism , Leukocytes/metabolism , Neutrophils/metabolism , Neutrophils/pathology
10.
J Immunol ; 197(12): 4771-4779, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27807193

ABSTRACT

Neutrophils act as a first line of defense against bacterial and fungal infections, but they are also important effectors of acute and chronic inflammation. Genome-wide association studies have established that the gene encoding the protein tyrosine phosphatase nonreceptor 22 (PTPN22) makes an important contribution to susceptibility to autoimmune disease, notably rheumatoid arthritis. Although PTPN22 is most highly expressed in neutrophils, its function in these cells remains poorly characterized. We show in this article that neutrophil effector functions, including adhesion, production of reactive oxygen species, and degranulation induced by immobilized immune complexes, were reduced in Ptpn22-/- neutrophils. Tyrosine phosphorylation of Lyn and Syk was altered in Ptpn22-/- neutrophils. On stimulation with immobilized immune complexes, Ptpn22-/- neutrophils manifested reduced activation of key signaling intermediates. Ptpn22-/- mice were protected from immune complex-mediated arthritis, induced by the transfer of arthritogenic serum. In contrast, in vivo neutrophil recruitment following thioglycollate-induced peritonitis and in vitro chemotaxis were not affected by lack of PTPN22. Our data suggest an important role for PTPN22-dependent dephosphorylation events, which are required to enable full FcγR-induced activation, pointing to an important role for this molecule in neutrophil function.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Rheumatoid/genetics , Neutrophils/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 22/metabolism , Animals , Antigen-Antibody Complex , Arthritis, Experimental/genetics , Cell Adhesion , Cell Degranulation , Genetic Predisposition to Disease , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Activation , Phosphorylation , Polymorphism, Genetic , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Reactive Oxygen Species/metabolism , Receptors, IgG/metabolism , Signal Transduction , Syk Kinase/metabolism , src-Family Kinases/metabolism
11.
Cell Rep ; 17(2): 374-386, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27705787

ABSTRACT

Neutrophils are peripheral blood leukocytes that represent the first line of immune cell defense against bacterial and fungal infections but are also crucial players in the generation of the inflammatory response. Many neutrophil cell surface receptors regulate important cellular processes via activation of agonist-activated PI3Ks. We show here that activation of human neutrophils with insoluble immune complexes drives a previously uncharacterized, PI3K-dependent, non-canonical, pro-apoptotic signaling pathway, FcγR-PI3Kß/δ-Cdc42-Pak-Mek-Erk. This is a rare demonstration of Ras/Raf-independent activation of Erk and of PI3K-mediated activation of Cdc42. In addition, comparative analysis of immune-complex- and fMLF-induced signaling uncovers key differences in pathways used by human and murine neutrophils. The non-canonical pathway we identify in this study may be important for the resolution of inflammation in chronic inflammatory diseases that rely on immune-complex-driven neutrophil activation.


Subject(s)
Antigen-Antibody Complex/metabolism , Apoptosis/genetics , Neutrophil Activation/genetics , Neutrophils/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cytoskeletal Proteins , Elafin/genetics , Elafin/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mice , Neutrophil Activation/immunology , Neutrophils/immunology , Receptors, IgG/genetics , Signal Transduction , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism , rho GTP-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...