Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Light Sci Appl ; 13(1): 94, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658538

ABSTRACT

Integrated switches play a crucial role in the development of reconfigurable optical add-drop multiplexers (ROADMs) that have greater flexibility and compactness, ultimately leading to robust single-chip solutions. Despite decades of research on switches with various structures and platforms, achieving a balance between dense integration, low insertion loss (IL), and polarization-dependent loss (PDL) remains a significant challenge. In this paper, we propose and demonstrate a 32 × 4 optical switch using high-index doped silica glass (HDSG) for ROADM applications. This switch is designed to route any of the 32 inputs to the express ports or drop any channels from 32 inputs to the target 4 drop ports or add any of the 4 ports to any of the 32 express channels. The switch comprises 188 Mach-Zehnder Interferometer (MZI) type switch elements, 88 optical vias for the 44 optical bridges, and 618 waveguide-waveguide crossings with three-dimensional (3D) structures. At 1550 nm, the fiber-to-fiber loss for each express channel is below 2 dB, and across the C and L bands, below 3 dB. For each input channel to all 4 drop/add channels at 1550 nm, the loss is less than 3.5 dB and less than 5 dB across the C and L bands. The PDLs for all express and input channels to the 4 drop/add channels are below 0.3 dB over the C band, and the crosstalk is under -50 dB for both the C and L bands.

2.
Opt Express ; 31(23): 37749-37762, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38017898

ABSTRACT

Soliton crystals are a novel form of microcomb, with relatively high conversion efficiency, good thermal robustness, and simple initiation among the methods to generate them. Soliton crystals can be easily generated in microring resonators with an appropriate mode-crossing. However, fabrication defects can significantly affect the mode-crossing placement and strength in devices. To enable soliton crystal states to be harnessed for a broader range of microcomb applications, we need a better understanding of the link between mode-crossing properties and the desired soliton crystal properties. Here, we investigate how to generate the same soliton crystal state in two different microrings, how changes in microring temperature change the mode-crossing properties, and how mode-crossing properties affect the generation of our desired soliton crystal state. We find that temperature affects the mode-crossing position in these rings but without major changes in the mode-crossing strength. We find that our wanted state can be generated over a device temperature range of 25 ∘C, with different mode-crossing properties, and is insensitive to the precise mode-crossing position between resonances.

3.
Appl Opt ; 62(14): 3772-3777, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37706995

ABSTRACT

Integrated narrow-linewidth lasers are the key devices in compact coherent optical systems of metrology, sensing, and optical microwave generation. Here, we demonstrate a hybrid integrated laser based on an optical negative feedback scheme. The laser is composed of a commercial distributed feedback (DFB) laser diode and an on-chip micro-resonator with a Q-factor of 0.815 million. The feedback optical field is coupled back to the laser cavity through the back facet. Therefore, the laser can maintain the lasing efficiency of the DFB laser diode. The linewidth of the DFB laser diode is compressed from 2 MHz to 6 kHz, corresponding to the linewidth reduction factor of 25.2 dB. The theoretical result shows that the laser performance still has a huge improvement margin through precise control of the detuning between laser frequency and the micro-resonator, as well as the phase delay of the feedback optical field. The hybrid narrow-linewidth laser diode has wide application prospects in coherent optical systems benefitting from the low cost and volume productivity.

4.
Opt Express ; 31(6): 10525-10532, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37157597

ABSTRACT

Silicon nitride (SiN) integrated optical waveguides have found a wide range of applications due to their low loss, broad wavelength transmission band and high nonlinearity. However, the large mode mismatch between the single-mode fiber and the SiN waveguide creates a challenge of fiber coupling to these waveguides. Here, we propose a coupling approach between fiber and SiN waveguides by utilizing the high-index doped silica glass (HDSG) waveguide as the intermediary to smooth out the mode transition. We achieved fiber-to-SiN waveguide coupling efficiency of lower than 0.8 dB/facet across the full C and L bands with high fabrication and alignment tolerances.

5.
Opt Express ; 30(22): 39816-39825, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36298924

ABSTRACT

Laser cavity-soliton microcombs are robust optical pulsed sources, usually implemented with a microresonator-filtered fibre laser. In such a configuration, a nonlinear microcavity converts the narrowband pulse resulting from bandwidth-limited amplification to a background-free broadband microcomb. Here, we theoretically and experimentally study the soliton conversion efficiency between the narrowband input pulse and the two outputs of a four-port integrated microcavity, namely the 'Drop' and 'Through' ports. We simultaneously measure on-chip, single-soliton conversion efficiencies of 45% and 25% for the two broadband comb outputs at the 'Drop' and 'Through' ports of a 48.9 GHz free-spectral range micro-ring resonator, obtaining a total conversion efficiency of 72%.

6.
Nature ; 608(7922): 303-309, 2022 08.
Article in English | MEDLINE | ID: mdl-35948714

ABSTRACT

In many disciplines, states that emerge in open systems far from equilibrium are determined by a few global parameters1,2. These states can often mimic thermodynamic equilibrium, a classic example being the oscillation threshold of a laser3 that resembles a phase transition in condensed matter. However, many classes of states cannot form spontaneously in dissipative systems, and this is the case for cavity solitons2 that generally need to be induced by external perturbations, as in the case of optical memories4,5. In the past decade, these highly localized states have enabled important advancements in microresonator-based optical frequency combs6,7. However, the very advantages that make cavity solitons attractive for memories-their inability to form spontaneously from noise-have created fundamental challenges. As sources, microcombs require spontaneous and reliable initiation into a desired state that is intrinsically robust8-20. Here we show that the slow non-linearities of a free-running microresonator-filtered fibre laser21 can transform temporal cavity solitons into the system's dominant attractor. This phenomenon leads to reliable self-starting oscillation of microcavity solitons that are naturally robust to perturbations, recovering spontaneously even after complete disruption. These emerge repeatably and controllably into a large region of the global system parameter space in which specific states, highly stable over long timeframes, can be achieved.

7.
Nature ; 589(7840): 44-51, 2021 01.
Article in English | MEDLINE | ID: mdl-33408378

ABSTRACT

Convolutional neural networks, inspired by biological visual cortex systems, are a powerful category of artificial neural networks that can extract the hierarchical features of raw data to provide greatly reduced parametric complexity and to enhance the accuracy of prediction. They are of great interest for machine learning tasks such as computer vision, speech recognition, playing board games and medical diagnosis1-7. Optical neural networks offer the promise of dramatically accelerating computing speed using the broad optical bandwidths available. Here we demonstrate a universal optical vector convolutional accelerator operating at more than ten TOPS (trillions (1012) of operations per second, or tera-ops per second), generating convolutions of images with 250,000 pixels-sufficiently large for facial image recognition. We use the same hardware to sequentially form an optical convolutional neural network with ten output neurons, achieving successful recognition of handwritten digit images at 88 per cent accuracy. Our results are based on simultaneously interleaving temporal, wavelength and spatial dimensions enabled by an integrated microcomb source. This approach is scalable and trainable to much more complex networks for demanding applications such as autonomous vehicles and real-time video recognition.

8.
Nat Commun ; 11(1): 2568, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32444605

ABSTRACT

Micro-combs - optical frequency combs generated by integrated micro-cavity resonators - offer the full potential of their bulk counterparts, but in an integrated footprint. They have enabled breakthroughs in many fields including spectroscopy, microwave photonics, frequency synthesis, optical ranging, quantum sources, metrology and ultrahigh capacity data transmission. Here, by using a powerful class of micro-comb called soliton crystals, we achieve ultra-high data transmission over 75 km of standard optical fibre using a single integrated chip source. We demonstrate a line rate of 44.2 Terabits s-1 using the telecommunications C-band at 1550 nm with a spectral efficiency of 10.4 bits s-1 Hz-1. Soliton crystals exhibit robust and stable generation and operation as well as a high intrinsic efficiency that, together with an extremely low soliton micro-comb spacing of 48.9 GHz enable the use of a very high coherent data modulation format (64 QAM - quadrature amplitude modulated). This work demonstrates the capability of optical micro-combs to perform in demanding and practical optical communications networks.

9.
Small ; 16(16): e1906563, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32159916

ABSTRACT

Layered 2D graphene oxide (GO) films are integrated with micro-ring resonators (MRRs) to experimentally demonstrate enhanced nonlinear optics. Both uniformly coated (1-5 layers) and patterned (10-50 layers) GO films are integrated on complementary-metal-oxide-semiconductor (CMOS)-compatible doped silica MRRs using a large-area, transfer-free, layer-by-layer GO coating method with precise control of the film thickness. The patterned devices further employ photolithography and lift-off processes to enable precise control of the film placement and coating length. Four-wave-mixing (FWM) measurements for different pump powers and resonant wavelengths show a significant improvement in efficiency of ≈7.6 dB for a uniformly coated device with 1 GO layer and ≈10.3 dB for a patterned device with 50 GO layers. The measurements agree well with theory, with the enhancement in FWM efficiency resulting from the high Kerr nonlinearity and low loss of the GO films combined with the strong light-matter interaction within the MRRs. The dependence of GO's third-order nonlinearity on layer number and pump power is also extracted from the FWM measurements, revealing interesting physical insights about the evolution of the GO films from 2D monolayers to quasi bulk-like behavior. These results confirm the high nonlinear optical performance of integrated photonic resonators incorporated with 2D layered GO films.

10.
Micromachines (Basel) ; 11(2)2020 Feb 15.
Article in English | MEDLINE | ID: mdl-32075346

ABSTRACT

Based on the gradient force of evanescent waves in silica waveguides and add-drop micro-ring resonators, the optical trapping and manipulation of micro size particles is demonstrated in a self-locked scheme that maintains the on-resonance system even if there is a change in the ambient temperature or environment. The proposed configuration allows the trapping of particles in the high Q resonator without the need for a precise wavelength adjustment of the input signal. On the one hand, a silicon dioxide waveguide having a lower refractive index and relatively larger dimensions facilitates the coupling of the laser with a single-mode fiber. Furthermore, the experimental design of the self-locked scheme reduces the sensitivity of the ring to the environment. This combination can trap the micro size particles with a high stability while manipulating them with high accuracy.

11.
Opt Express ; 27(18): 25251-25264, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31510400

ABSTRACT

The ability of laser systems to emit different adjustable temporal pulse profiles and patterns is desirable for a broad range of applications. While passive mode-locking techniques have been widely employed for the realization of ultrafast laser pulses with mainly Gaussian or hyperbolic secant temporal profiles, the generation of versatile pulse shapes in a controllable way and from a single laser system remains a challenge. Here we show that a nonlinear amplifying loop mirror (NALM) laser with a bandwidth-limiting filter (in a nearly dispersion-free arrangement) and a short integrated nonlinear waveguide enables the realization and distinct control of multiple mode-locked pulsing regimes (e.g., Gaussian pulses, square waves, fast sinusoidal-like oscillations) with repetition rates that are variable from the fundamental (7.63 MHz) through its 205th harmonic (1.56 GHz). These dynamics are described by a newly developed and compact theoretical model, which well agrees with our experimental results. It attributes the control of emission regimes to the change of the NALM response function that is achieved by the adjustable interplay between the NALM amplification and the nonlinearity. In contrast to previous square wave emissions, we experimentally observed that an Ikeda instability was responsible for square wave generation. The presented approach enables laser systems that can be universally applied to various applications, e.g., spectroscopy, ultrafast signal processing and generation of non-classical light states.

12.
Nat Commun ; 9(1): 4884, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30459363

ABSTRACT

Modern optical systems increasingly rely on complex physical processes that require accessible control to meet target performance characteristics. In particular, advanced light sources, sought for, for example, imaging and metrology, are based on nonlinear optical dynamics whose output properties must often finely match application requirements. However, in these systems, the availability of control parameters (e.g., the optical field shape, as well as propagation medium properties) and the means to adjust them in a versatile manner are usually limited. Moreover, numerically finding the optimal parameter set for such complex dynamics is typically computationally intractable. Here, we use an actively controlled photonic chip to prepare and manipulate patterns of femtosecond optical pulses that give access to an enhanced parameter space in the framework of supercontinuum generation. Taking advantage of machine learning concepts, we exploit this tunable access and experimentally demonstrate the customization of nonlinear interactions for tailoring supercontinuum properties.

13.
J Vis Exp ; (136)2018 06 08.
Article in English | MEDLINE | ID: mdl-29939165

ABSTRACT

We present a method for the generation and coherent manipulation of pulsed quantum frequency combs. Until now, methods of preparing high-dimensional states on-chip in a practical way have remained elusive due to the increasing complexity of the quantum circuitry needed to prepare and process such states. Here, we outline how high-dimensional, frequency-bin entangled, two-photon states can be generated at a stable, high generation rate by using a nested-cavity, actively mode-locked excitation of a nonlinear micro-cavity. This technique is used to produce pulsed quantum frequency combs. Moreover, we present how the quantum states can be coherently manipulated using standard telecommunications components such as programmable filters and electro-optic modulators. In particular, we show in detail how to accomplish state characterization measurements such as density matrix reconstruction, coincidence detection, and single photon spectrum determination. The presented methods form an accessible, reconfigurable, and scalable foundation for complex high-dimensional state preparation and manipulation protocols in the frequency domain.


Subject(s)
Optics and Photonics/instrumentation , Quantum Dots/metabolism , Optics and Photonics/methods
14.
Opt Lett ; 43(9): 2002-2005, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29714731

ABSTRACT

We demonstrate robust soliton crystals generation with a fixed frequency pump laser through a thermoelectric-cooler-based thermal-tuning approach in a butterfly-packaged complementary-metal-oxide-semiconductor-compatible microresonator. Varieties of soliton crystal states, exhibiting "palm-like" optical spectra that result from the strong interactions between the dense soliton ensembles and reflect their temporal distribution directly, are experimentally observed by sweeping one cavity resonance across the pump frequency from the blue-detuned side by reducing the operating temperature of the resonator. Benefitting from the tiny intra-cavity energy change, repeatable interconversion between the chaotic modulation instability and stable soliton crystal states can be successfully achieved via simple tuning of the temperature or pump power, showing the easy accessibility and excellent stability of such soliton crystals. This work could facilitate microresonator-based optical frequency combs towards a portable, adjustable, and low-cost system while avoiding the requirements of delicate frequency-sweeping pump techniques.

15.
Opt Express ; 26(3): 2569-2583, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29401795

ABSTRACT

We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.

16.
Opt Lett ; 42(21): 4391-4394, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29088171

ABSTRACT

We investigate single-channel and multichannel phase-sensitive amplification (PSA) in a highly nonlinear, CMOS-compatible spiral waveguide with ultralow linear and negligible nonlinear losses. We achieve a net gain of 10.4 dB and an extinction ratio of 24.6 dB for single-channel operation, as well as a 5 dB gain and a 15 dB extinction ratio spanning over a bandwidth of 24 nm for multiple-channel operation. In addition, we derive a simple analytic solution that enables calculating the maximum phase-sensitive gain in any Kerr medium featuring linear and nonlinear losses. These results not only give a clear guideline for designing PSA-based amplifiers but also show that it is possible to implement both optical regeneration and amplification in a single on-chip device.

17.
Opt Express ; 25(16): 18940-18949, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-29041085

ABSTRACT

The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications. However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies. Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e. source efficiency), while maintaining a high CAR and photon purity. Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.

18.
Opt Lett ; 42(17): 3407-3410, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28957049

ABSTRACT

We propose a scheme for bifurcation control in micro-cavities based on the interplay between the ultrafast Kerr effect and a slow nonlinearity, such as thermo-optical, free-carriers-induced, or opto-mechanical one. We demonstrate that Hopf bifurcations can be efficiently controlled with a low energy signal via four-wave mixing. Our results show that new strategies are possible for designing efficient micro-cavity-based oscillators and sensors. Moreover, they provide new understanding of the effect of coherent wave mixing in the thermal stability regions of optical micro-cavities, fundamental for micro-resonator-based applications in communications, sensing, and metrology, including optical micro-combs.

19.
Nature ; 546(7660): 622-626, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28658228

ABSTRACT

Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

20.
Sci Rep ; 6: 28501, 2016 06 24.
Article in English | MEDLINE | ID: mdl-27338250

ABSTRACT

In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness.

SELECTION OF CITATIONS
SEARCH DETAIL
...