Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Oncol (Dordr) ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607517

ABSTRACT

PURPOSE: GPX8, which is found in the endoplasmic reticulum lumen, is a member of the Glutathione Peroxidases (GPXs) family. Its role in hepatocellular carcinoma (HCC) is unknown. METHODS: Immunohistochemical staining was used to detect the protein levels of GPX8 in HCC tissue microarrays. A short hairpin RNA lentivirus was used to knock down GPX8, and the main signaling pathways were investigated using transcriptome sequencing and a phosphorylated kinase array. The sphere formation assays, cloning-formation assays and cell migration assays were used to evaluate the stemness and migration ability of HCC cells. Identifying the GPX8-interacting proteins was accomplished through immunoprecipitation and protein mass spectrometry. RESULTS: The GPX8 protein levels were downregulated in HCC patients. Low expression of GPX8 protein was related to early recurrence and poor prognosis in HCC patients. GPX8 knockdown could enhance the stemness and migration ability of HCC cells. Consistently, Based on transcriptome analysis, multiple signaling pathways that include the PI3K-AKT and signaling pathways that regulate the pluripotency of stem cells, were activated after GPX8 knockdown. The downregulation of GPX8 could increase the expression of the tumor stemness markers KLF4, OCT4, and CD133. The in vivo downregulation of GPX8 could also promote the subcutaneous tumor-forming and migration ability of HCC cells. MK-2206, which is a small-molecule inhibitor of AKT, could reverse the tumor-promoting effects both in vivo and in vitro. We discovered that GPX8 and the 71-kDa heat shock cognate protein (Hsc70) have a direct interaction. The phosphorylation of AKT encouraged the translocation of Hsc70 into the nucleus and the expression of the PI3K p110 subunit, thereby increasing the downregulation of GPX8. CONCLUSION: The findings from this study demonstrate the anticancer activity of GPX8 in HCC by inactivating the Hsc70/AKT pathway. The results suggest a possible therapeutic target for HCC.

2.
Phytomedicine ; 126: 155462, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394734

ABSTRACT

BACKGROUND: Cetuximab, an inhibitor targeting EGFR, is widely applied in clinical management of colorectal cancer (CRC). Nevertheless, drug resistance induced by KRAS-mutations limits cetuximab's anti-cancer effectiveness. Furthermore, the persistent activation of EGFR-independent AKT is another significant factor in cetuximab resistance. Nevertheless, the mechanism that EGFR-independent AKT drives cetuximab resistance remains unclear. Thus, highlighting the need to optimize therapies to overcome cetuximab resistance and also to explore the underlying mechanism. PURPOSE: This work aimed to investigate whether and how andrographolide enhance the therapeutic efficacy of cetuximab in KRAS-mutant CRC cells by modulating AKT. METHODS: The viabilities of CRC cell lines were analyzed by CCK-8. The intracellular proteins phosphorylation levels were investigated by Human Phospho-kinase Antibody Array analysis. Knockdown and transfection of PDGFRß were used to evaluate the role of andrographolide on PDGFRß. The western blotting was used to investigate Wnt/ß-catenin pathways, PI3K/AKT, and EMT in KRAS-mutant CRC cells. The animal models including subcutaneous tumor and lung metastasis were performed to assess tumor response to therapy in vivo. RESULTS: Andrographolide was demonstrated to decrease the expression of PI3K and AKT through targeting PDGFRß and EGFR, and it enhanced cetuximab effect on KRAS-mutant CRC cells by this mechanism. Meanwhile, andrographolide helped cetuximab to inhibit Wnt/ß-catenin, CRC cell migration and reduced Vimentin expression, while increasing that of E-cadherin. Lastly, co-treatment with cetuximab and andrographolide reduced the growth of KRAS-mutant tumors and pulmonary metastases in vivo. CONCLUSIONS: Our findings suggest that andrographolide can overcome the KRAS-mutant CRC cells' resistance to cetuximab through inhibiting the EGFR/PI3K/AKT and PDGFRß /AKT signaling pathways. This research provided a possible theory that andrographolide sensitizes KRAS-mutant tumor to EGFR TKI.


Subject(s)
Colorectal Neoplasms , Diterpenes , Proto-Oncogene Proteins c-akt , Animals , Humans , Cetuximab/pharmacology , Cetuximab/genetics , Cetuximab/metabolism , Proto-Oncogene Proteins c-akt/metabolism , beta Catenin/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , ErbB Receptors/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Drug Resistance, Neoplasm , Cell Line, Tumor , Wnt Signaling Pathway , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mutation
3.
J Transl Med ; 21(1): 734, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853415

ABSTRACT

BACKGROUND AND AIMS: The recurrence and metastasis of hepatocellular carcinoma (HCC) are mainly caused by microvascular invasion (MVI). Our study aimed to uncover the cellular atlas of MVI+ HCC and investigate the underlying immune infiltration patterns with radiomics features. METHODS: Three MVI positive HCC and three MVI negative HCC samples were collected for single-cell RNA-seq analysis. 26 MVI positive HCC and 30 MVI negative HCC tissues were underwent bulk RNA-seq analysis. For radiomics analysis, radiomics features score (Radscore) were built using preoperative contrast MRI for MVI prediction and overall survival prediction. We deciphered the metabolism profiles of MVI+ HCC using scMetabolism and scFEA. The correlation of Radscore with the level of APOE+ macrophages and iCAFs was identified. Whole Exome Sequencing (WES) was applied to distinguish intrahepatic metastasis (IM) and multicentric occurrence (MO). Transcriptome profiles were compared between IM and MO. RESULTS: Elevated levels of APOE+ macrophages and iCAFs were detected in MVI+ HCC. There was a strong correlation between the infiltration of APOE+ macrophages and iCAFs, as confirmed by immunofluorescent staining. MVI positive tumors exhibited increased lipid metabolism, which was attributed to the increased presence of APOE+ macrophages. APOE+ macrophages and iCAFs were also found in high levels in IM, as opposed to MO. The difference of infiltration level and Radscore between two nodules in IM was relatively small. Furthermore, we developed Radscore for predicting MVI and HCC prognostication that were also able to predict the level of infiltration of APOE+ macrophages and iCAFs. CONCLUSION: This study demonstrated the interactions of cell subpopulations and distinct metabolism profiles in MVI+ HCC. Besides, MVI prediction Radscore and MVI prognostic Radscore were highly correlated with the infiltration of APOE+ macrophages and iCAFs, which helped to understand the biological significance of radiomics and optimize treatment strategy for MVI+ HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Retrospective Studies , Neoplasm Invasiveness , Apolipoproteins E/genetics
4.
Hepatol Int ; 17(4): 927-941, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37031334

ABSTRACT

BACKGROUND AND PURPOSE: Tumor recurrence after liver transplantation (LT) impedes the curative chance for hepatocellular carcinoma (HCC) patients. This study aimed to develop a deep pathomics score (DPS) for predicting tumor recurrence after liver transplantation using deep learning. PATIENTS AND METHODS: Two datasets of 380 HCC patients who underwent LT were enrolled. Residual convolutional neural networks were used to identify six histological structures of HCC. The individual risk score of each structure and DPS were derived by a modified DeepSurv network. Cox regression analysis and Concordance index were used to evaluate the prognostic significance. The cellular exploration of prognostic immune biomarkers was performed by quantitative and spatial proximity analysis according to three panels of 7-color immunofluorescence. RESULTS: The overall classification accuracy of HCC tissue was 97%. At the structural level, immune cells were the most significant tissue category for predicting post-LT recurrence (HR 1.907, 95% CI 1.490-2.440). The C-indices of DPS achieved 0.827 and 0.794 in the training and validation cohorts, respectively. Multivariate analysis for recurrence-free survival (RFS) showed that DPS (HR 4.795, 95% CI 3.017-7.619) was an independent risk factor. Patients in the high-risk subgroup had a shorter RFS, larger tumor diameter and a lower proportion of clear tumor borders. At the cellular level, a higher infiltration of intratumoral NK cells was negatively correlated with recurrence risk. CONCLUSIONS: This study established an effective DPS. Immune cells were the most significant histological structure related to HCC recurrence. DPS performed well in post-LT recurrence prediction and the identification of clinicopathological features.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Liver Transplantation , Humans , Liver Transplantation/adverse effects , Neoplasm Recurrence, Local , Retrospective Studies , Prognosis , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...