Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(38): 88598-88611, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37438503

ABSTRACT

Diclofenac (DCF), one of the most current and widely used nonsteroidal anti-inflammatory drugs (NSAIDs), has been frequently detected in aquatic environments worldwide. However, the ecotoxicological effects of DCF on freshwater invertebrates remain largely unknown. In the present study, Corbicula fluminea were exposed to environmentally relevant concentrations of DCF (0, 2, 20, and 200 µg/L) for 28 days, and the potential adverse effects of DCF on siphoning behavior, antioxidant responses, and apoptosis were investigated. Our results showed that the siphon efficiencies of clams were significantly suppressed under DCF stress. DCF exerted neurotoxicity via reducing the activity of acetylcholinesterase (AChE) in gills and digestive gland of C. fluminea. Exposure to DCF induced antioxidant stress and increased malondialdehyde (MDA) levels in both gills and digestive gland of C. fluminea. Transcriptional alterations of apoptosis-related genes indicated that DCF might induce apoptosis by triggering mitochondrial apoptotic pathway. These findings can improve our understanding of the ecological risk of DCF in freshwater ecosystems.


Subject(s)
Corbicula , Water Pollutants, Chemical , Animals , Antioxidants/metabolism , Diclofenac/toxicity , Diclofenac/metabolism , Ecosystem , Acetylcholinesterase/metabolism , Water Pollutants, Chemical/analysis
2.
Plants (Basel) ; 12(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36903998

ABSTRACT

Coastal macroalgae may be subjected to global and local environmental stressors, such as ocean acidification and heavy-metal pollution. We investigated the growth, photosynthetic characteristics, and biochemical compositions of juvenile sporophytes of Saccharina japonica cultivated at two pCO2 levels (400 and 1000 ppmv) and four copper concentrations (natural seawater, control; 0.2 µM, low level; 0.5 µM, medium level; and 1 µM, high level) to better understand how macroalgae respond to ongoing environmental changes. The results showed that the responses of juvenile S. japonica to copper concentrations depended on the pCO2 level. Under the 400 ppmv condition, medium and high copper concentrations significantly decreased the relative growth rate (RGR) and non-photochemical quenching (NPQ) but increased the relative electron transfer rate (rETR) and chlorophyll a (Chl a), chlorophyll c (Chl c), carotenoid (Car), and soluble carbohydrate contents. At 1000 ppmv, however, none of the parameters had significant differences between the different copper concentrations. Our data suggest that excess copper may inhibit the growth of juvenile sporophytes of S. japonica, but this negative effect could be alleviated by CO2-induced ocean acidification.

3.
Plants (Basel) ; 11(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36365430

ABSTRACT

The combined effect of elevated pCO2 (Partial Pressure of Carbon Dioxide) and decreased salinity, which is mainly caused by freshwater input, on the growth and physiological traits of algae has been poorly assessed. In order to investigate their individual and interactive effects on the development of commercially farmed algae, the juvenile sporophytes of Saccharina japonica were cultivated under different levels of salinity (30, 25 and 20 psu) and pCO2 (400 and 1000 µatm). Individually, decreased salinity significantly reduced the growth rate and pigments of S. japonica, indicating that the alga was low-salinity stressed. The maximum quantum yield, Fv/Fm, declined at low salinities independent of pCO2, suggesting that the hyposalinity showed the main effect. Unexpectedly, the higher pCO2 enhanced the maximum relative electron transport rate (rETRmax) but decreased the growth rate, pigments and soluble carbohydrates contents. This implies a decoupling between the photosynthesis and growth of this alga, which may be linked to an energetic reallocation among the different metabolic processes. Interactively and previously untested, the decreased salinity offset the improvement of rETRmax and aggravated the declines of growth rate and pigment content caused by the elevated pCO2. These behaviors could be associated with the additionally decreased pH that was induced by the low salinity. Our data, therefore, unveils that the decreased salinity may increase the risks of future CO2-induced ocean acidification on the production of S. japonica.

4.
PeerJ ; 7: e8040, 2019.
Article in English | MEDLINE | ID: mdl-31799072

ABSTRACT

Ocean acidification and eutrophication are two major environmental issues affecting kelp mariculture. In this study, the growth, photosynthesis, and biochemical compositions of adult sporophytes of Saccharina japonica were evaluated at different levels of pCO2 (400 and 800 µatm) and nutrients (nutrient-enriched and non-enriched seawater). The relative growth rate (RGR), net photosynthetic rate, and all tested biochemical contents (including chlorophyll (Chl) a, Chl c, soluble carbohydrates, and soluble proteins) were significantly lower at 800 µatm than at 400 µatm pCO2. The RGR and the contents of Chl a and soluble proteins were significantly higher under nutrient-enriched conditions than under non-enriched conditions. Moreover, the negative effects of the elevated pCO2 level on the RGR, net photosynthetic rate, Chl c and the soluble carbohydrates and proteins contents were synergized by the elevated nutrient availability. These results implied that increased pCO2could suppress the growth and biochemical composition of adult sporophytes of S. japonica. The interactive effects of ocean acidification and eutrophication constitute a great threat to the cultivation of S. japonica due to growth inhibition and a reduction in quality.

SELECTION OF CITATIONS
SEARCH DETAIL
...