Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-15, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37555593

ABSTRACT

Allosteric effectors play an important role in regulating the oxygen supply efficiency of hemoglobin for blood storage and disease treatment. However, allosteric effectors that are approved by the US FDA are limited. In this study, cefmetazole sodium (CS) was found to bind adult hemoglobin (HbA) from FDA library (1338 compounds) using surface plasmon resonance imaging high-throughput screening. Using surface plasmon resonance (SPR), the interaction between CS and HbA was verified. The oxygen dissociation curve of HbA after CS interaction showed a significant increase in P50 and theoretical oxygen-release capacity. Acid-base sensitivity (SI) exhibited a decreasing trend, although not significantly different. An oxygen dissociation assay indicated that CS accelerated HbA deoxygenation. Microfluidic modulated spectroscopy showed that CS changed the ratio of the alpha-helix to the beta-sheet of HbA. Molecular docking suggested CS bound to HbA's ß-chains via hydrogen bonds, with key amino acids being N282, K225, H545, K625, K675, and V544.The results of molecular dynamics simulations (MD) revealed a stable orientation of the HbA-CS complex. CS did not significantly affect the P50 of bovine hemoglobin, possibly due to the lack of Valß1 and Hisß2, indicating that these were the crucial amino acids involved in HbA's oxygen affinity. Competition between the 2,3-Diphosphoglycerate (2,3-DPG) and CS in the HbA interaction was also determined by SPR, molecular docking and MD. In summary, CS could interact with HbA and regulate the oxygen supply efficiency via forming stable hydrogen bonds with the ß-chains of HbA, and showed competition with 2,3-DPG.Communicated by Ramaswamy H. Sarma.

2.
Molecules ; 28(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36903296

ABSTRACT

Acute altitude hypoxia represents the cause of multiple adverse consequences. Current treatments are limited by side effects. Recent studies have shown the protective effects of resveratrol (RSV), but the mechanism remains unknown. To address this, the effects of RSV on the structure and function of hemoglobin of adult (HbA) were preliminarily analyzed using surface plasmon resonance (SPR) and oxygen dissociation assays (ODA). Molecular docking was conducted to specifically analyze the binding regions between RSV and HbA. The thermal stability was characterized to further validate the authenticity and effect of binding. Changes in the oxygen supply efficiency of HbA and rat RBCs incubated with RSV were detected ex vivo. The effect of RSV on the anti-hypoxic capacity under acute hypoxic conditions in vivo was evaluated. We found that RSV binds to the heme region of HbA following a concentration gradient and affects the structural stability and rate of oxygen release of HbA. RSV enhances the oxygen supply efficiency of HbA and rat RBCs ex vivo. RSV prolongs the tolerance times of mice suffering from acute asphyxia. By enhancing the oxygen supply efficiency, it alleviates the detrimental effects of acute severe hypoxia. In conclusion, RSV binds to HbA and regulates its conformation, which enhances oxygen supply efficiency and improves adaption to acute severe hypoxia.


Subject(s)
Hemoglobins , Hypoxia , Animals , Mice , Rats , Resveratrol , Molecular Docking Simulation , Hemoglobins/chemistry , Oxygen/chemistry
3.
Front Pharmacol ; 14: 1115224, 2023.
Article in English | MEDLINE | ID: mdl-36891263

ABSTRACT

Introduction: High altitude-related hypoxia-induced organ damage significantly impacts people who are exposed to acute high-altitude environment. At present, kidney injury still lacks effective treatment strategies. Iridium nanozymes (Ir-NPs) are a nanomaterial with various enzymatic activities and are expected to be used in kidney injury treatment. Methods: In this study, we simulated a high-altitude environment (6000 m) to induce a kidney injury model, and explored the therapeutic effect of Ir-NPs in mice with kidney injury in this environment. Changes in the microbial community and metabolites were analyzed to explore the possible mechanism underlying the improvement of kidney injury during acute altitude hypoxia in mice treated with Ir-NPs. Results: It was discovered that plasma lactate dehydrogenase and urea nitrogen levels were considerably increased in mice exposed to acute altitude hypoxia compared to mice in a normal oxygen environment. Furthermore, there was a substantial increase in IL-6 expression levels in hypoxic mice; contrastingly, Ir-NPs decreased IL-6 expression levels, reduced the levels of succinic acid and indoxyl sulfate in the plasma and kidney pathological changes caused by acute altitude hypoxia. Microbiome analysis showed that bacteria, such as Lachnospiraceae_UCG_006 predominated in mice treated with Ir-NPs. Conclusion: Correlation analysis of the physiological, biochemical, metabolic, and microbiome-related parameters showed that Ir-NPs could reduce the inflammatory response and protect kidney function under acute altitude hypoxia, which may be related to intestinal flora distribution regulation and plasma metabolism in mice. Therefore, this study provides a novel therapeutic strategy for hypoxia-related kidney injury, which could be applied to other hypoxia-related diseases.

4.
Artif Cells Nanomed Biotechnol ; 48(1): 867-874, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32460558

ABSTRACT

Oxygen tension at 50% haemoglobin saturation (P50), which reflects the degree of peripheral oxygen offloading and tissue oxygenation, plays an important role in the diagnosis and treatment of disease, as well as in transfusion research. Blood gas analysers are commonly used in clinical and obtain P50 values through complex calculations and analysis. Oxygenation-dissociation analysers are specially designed to record the oxygen dissociation curves and obtain P50 values of whole blood, red blood cells (RBCs), and stroma-free haemoglobin. However, whether the two equipment obtain comparable data is still uncertain. Herein, we used both equipment to detect P50 values of blood and stroma-free haemoglobin from human and bovine sources, venous and arterial blood of beagle and rat, and stored rat blood. For human blood, both analysers yielded similar data. P50 of the stroma-free haemoglobin and bovine blood could only be properly detected by oxygenation-dissociation analysers. Blood gas analysers showed different P50 values, while oxygenation-dissociation analysers got similar P50 values for arterial and venous samples. Oxygenation-dissociation analysers distinguished changes in P50 values during RBCs storage. Compared with the blood gas analysers, oxygenation-dissociation analysers had a stronger detection capability in P50 measurement with regard to both sample types and species.


Subject(s)
Blood Gas Analysis/instrumentation , Oxygen/metabolism , Animals , Artifacts , Cattle , Dogs , Erythrocytes/metabolism , Hemoglobins/metabolism , Humans , Rats
5.
J Biomed Nanotechnol ; 16(8): 1314-1323, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-33397560

ABSTRACT

Hemoglobin-polydopamine particles (Hb-PDA) have shown high stability, with polydopamine (PDA) serving as a protective layer and antioxidant. However, the effects of the PDA coating on the properties and in vivo biosafety of Hb-PDA remain unclear. This work was conducted to characterize Hb-PDA and evaluate its biosafety. Hb-PDA exhibited negative surface charge and their infusion did not cause blood immunotoxicity or significant tissue injury. Hb-PDA were not phagocyted after co-incubation with macrophages for 3 h. Moreover, the particles showed the highest accumulation in the lungs, and a prolonged retention in major organs. It was also found that the particles were cleared by macrophages in splenic tissue and Kupffer cells in hepatic tissue. In summary, this research showed that Hb-PDA has high dispersion stability, low in vivo toxicity, and extended retention, illustrating its potency as a biosafe oxygen carrier.


Subject(s)
Containment of Biohazards , Oxygen , Hemoglobins , Indoles , Polymers/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL