Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38715364

ABSTRACT

Current coronavirus disease 2019 vaccines face limitations including waning immunity, immune escape by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, limited cellular response, and poor mucosal immunity. We engineered a Clec9A-receptor binding domain (RBD) antibody construct that delivers the SARS-CoV-2 RBD to conventional type 1 dendritic cells. Compared with non-targeting approaches, single dose immunization in mice with Clec9A-RBD induced far higher RBD-specific antibody titers that were sustained for up to 21 months after vaccination. Uniquely, increasing neutralizing and antibody-dependent cytotoxicity activities across the sarbecovirus family was observed, suggesting antibody affinity maturation over time. Consistently and remarkably, RBD-specific follicular T helper cells and germinal center B cells persisted up to 12 months after immunization. Furthermore, Clec9A-RBD immunization induced a durable mono- and poly-functional T-helper 1-biased cellular response that was strongly cross-reactive against SARS-CoV-2 variants of concern, including Omicron subvariants, and with a robust CD8+ T cell signature. Uniquely, Clec9A-RBD single-shot systemic immunization effectively primed RBD-specific cellular and humoral immunity in lung and resulted in significant protection against homologous SARS-CoV-2 challenge as evidenced by limited body weight loss and approximately 2 log10 decrease in lung viral loads compared with non-immunized controls. Therefore, Clec9A-RBD immunization has the potential to trigger robust and sustained, systemic and mucosal protective immunity against rapidly evolving SARS-CoV2 variants.

2.
Proc Natl Acad Sci U S A ; 119(13): e2025607119, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35320040

ABSTRACT

SignificanceAlthough the need for a universal influenza vaccine has long been recognized, only a handful of candidates have been identified so far, with even fewer advancing in the clinical pipeline. The 24-amino acid ectodomain of M2 protein (M2e) has been developed over the past two decades. However, M2e-based vaccine candidates have shortcomings, including the need for several administrations and the lack of sustained antibody titers over time. We report here a vaccine targeting strategy that has the potential to confer sustained and strong protection upon a single shot of a small amount of M2e antigen. The current COVID-19 pandemic has highlighted the importance of developing versatile, powerful platforms for the rapid deployment of vaccines against any incoming threat.


Subject(s)
COVID-19 , Influenza A virus , Influenza Vaccines , Influenza, Human , Viral Matrix Proteins , Viroporin Proteins , Animals , Antibodies, Monoclonal/genetics , Antibodies, Viral/genetics , Antibodies, Viral/immunology , COVID-19/prevention & control , Dendritic Cells/immunology , Humans , Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/prevention & control , Pandemics/prevention & control , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/immunology , Viroporin Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...