Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Comput Biol Med ; 84: 59-68, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28343061

ABSTRACT

The cause of diabetic macular edema (DME) is due to prolonged and uncontrolled diabetes mellitus (DM) which affects the vision of diabetic subjects. DME is graded based on the exudate location from the macula. It is clinically diagnosed using fundus images which is tedious and time-consuming. Regular eye screening and subsequent treatment may prevent the vision loss. Hence, in this work, a hybrid system based on Radon transform (RT), discrete wavelet transform (DWT) and discrete cosine transform (DCT) are proposed for an automated detection of DME. The fundus images are subjected to RT to obtain sinograms and DWT is applied on these sinograms to extract wavelet coefficients (approximate, horizontal, vertical and diagonal). DCT is applied on approximate coefficients to obtain 2D-DCT coefficients. Further, these coefficients are converted into 1D vector by arranging the coefficients in zig-zag manner. This 1D signal is subjected to locality sensitive discriminant analysis (LSDA). Finally, various supervised classifiers are used to classify the three classes using significant features. Our proposed technique yielded a classification accuracy of 100% and 97.01% using two and seven significant features for private and public (MESSIDOR) databases respectively. Also, a maculopathy index is formulated with two significant parameters to discriminate the three groups distinctly using a single integer. Hence, our obtained results suggest that this system can be used as an eye screening tool for diabetic subjects for DME.


Subject(s)
Diabetic Retinopathy/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Macular Edema/diagnostic imaging , Adult , Aged , Algorithms , Discriminant Analysis , Female , Fundus Oculi , Humans , Male , Middle Aged , Wavelet Analysis
2.
Comput Biol Med ; 83: 48-58, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28231511

ABSTRACT

Identification of alarming features in the electrocardiogram (ECG) signal is extremely significant for the prediction of congestive heart failure (CHF). ECG signal analysis carried out using computer-aided techniques can speed up the diagnosis process and aid in the proper management of CHF patients. Therefore, in this work, dual tree complex wavelets transform (DTCWT)-based methodology is proposed for an automated identification of ECG signals exhibiting CHF from normal. In the experiment, we have performed a DTCWT on ECG segments of 2s duration up to six levels to obtain the coefficients. From these DTCWT coefficients, statistical features are extracted and ranked using Bhattacharyya, entropy, minimum redundancy maximum relevance (mRMR), receiver-operating characteristics (ROC), Wilcoxon, t-test and reliefF methods. Ranked features are subjected to k-nearest neighbor (KNN) and decision tree (DT) classifiers for automated differentiation of CHF and normal ECG signals. We have achieved 99.86% accuracy, 99.78% sensitivity and 99.94% specificity in the identification of CHF affected ECG signals using 45 features. The proposed method is able to detect CHF patients accurately using only 2s of ECG signal length and hence providing sufficient time for the clinicians to further investigate on the severity of CHF and treatments.


Subject(s)
Algorithms , Diagnosis, Computer-Assisted/methods , Electrocardiography/methods , Heart Failure/diagnosis , Machine Learning , Wavelet Analysis , Adult , Aged , Aged, 80 and over , Computer Simulation , Data Interpretation, Statistical , Female , Humans , Male , Middle Aged , Models, Statistical , Pattern Recognition, Automated/methods , Reproducibility of Results , Sensitivity and Specificity , Young Adult
3.
Comput Biol Med ; 75: 54-62, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27253617

ABSTRACT

Posterior Segment Eye Diseases (PSED) namely Diabetic Retinopathy (DR), glaucoma and Age-related Macular Degeneration (AMD) are the prime causes of vision loss globally. Vision loss can be prevented, if these diseases are detected at an early stage. Structural abnormalities such as changes in cup-to-disc ratio, Hard Exudates (HE), drusen, Microaneurysms (MA), Cotton Wool Spots (CWS), Haemorrhages (HA), Geographic Atrophy (GA) and Choroidal Neovascularization (CNV) in PSED can be identified by manual examination of fundus images by clinicians. However, manual screening is labour-intensive, tiresome and time consuming. Hence, there is a need to automate the eye screening. In this work Bi-dimensional Empirical Mode Decomposition (BEMD) technique is used to decompose fundus images into 2D Intrinsic Mode Functions (IMFs) to capture variations in the pixels due to morphological changes. Further, various entropy namely Renyi, Fuzzy, Shannon, Vajda, Kapur and Yager and energy features are extracted from IMFs. These extracted features are ranked using Chernoff Bound and Bhattacharyya Distance (CBBD), Kullback-Leibler Divergence (KLD), Fuzzy-minimum Redundancy Maximum Relevance (FmRMR), Wilcoxon, Receiver Operating Characteristics Curve (ROC) and t-test methods. Further, these ranked features are fed to Support Vector Machine (SVM) classifier to classify normal and abnormal (DR, AMD and glaucoma) classes. The performance of the proposed eye screening system is evaluated using 800 (Normal=400 and Abnormal=400) digital fundus images and 10-fold cross validation method. Our proposed system automatically identifies normal and abnormal classes with an average accuracy of 88.63%, sensitivity of 86.25% and specificity of 91% using 17 optimal features ranked using CBBD and SVM-Radial Basis Function (RBF) classifier. Moreover, a novel Retinal Risk Index (RRI) is developed using two significant features to distinguish two classes using single number. Such a system helps to reduce eye screening time in polyclinics or community-based mass screening. They will refer the patients to main hospitals only if the diagnosis belong to the abnormal class. Hence, the main hospitals will not be unnecessarily crowded and doctors can devote their time for other urgent cases.


Subject(s)
Diabetic Retinopathy/diagnostic imaging , Glaucoma/diagnostic imaging , Image Processing, Computer-Assisted/methods , Macular Degeneration/diagnostic imaging , Retina/diagnostic imaging , Adult , Aged , Humans , Male , Middle Aged
4.
Comput Biol Med ; 73: 131-40, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27107676

ABSTRACT

Age-related Macular Degeneration (AMD) affects the central vision of aged people. It can be diagnosed due to the presence of drusen, Geographic Atrophy (GA) and Choroidal Neovascularization (CNV) in the fundus images. It is labor intensive and time-consuming for the ophthalmologists to screen these images. An automated digital fundus photography based screening system can overcome these drawbacks. Such a safe, non-contact and cost-effective platform can be used as a screening system for dry AMD. In this paper, we are proposing a novel algorithm using Radon Transform (RT), Discrete Wavelet Transform (DWT) coupled with Locality Sensitive Discriminant Analysis (LSDA) for automated diagnosis of AMD. First the image is subjected to RT followed by DWT. The extracted features are subjected to dimension reduction using LSDA and ranked using t-test. The performance of various supervised classifiers namely Decision Tree (DT), Support Vector Machine (SVM), Probabilistic Neural Network (PNN) and k-Nearest Neighbor (k-NN) are compared to automatically discriminate to normal and AMD classes using ranked LSDA components. The proposed approach is evaluated using private and public datasets such as ARIA and STARE. The highest classification accuracy of 99.49%, 96.89% and 100% are reported for private, ARIA and STARE datasets. Also, AMD index is devised using two LSDA components to distinguish two classes accurately. Hence, this proposed system can be extended for mass AMD screening.


Subject(s)
Algorithms , Choroidal Neovascularization/diagnostic imaging , Databases, Factual , Image Processing, Computer-Assisted/methods , Macular Degeneration/diagnostic imaging , Support Vector Machine , Female , Humans , Male , Risk Assessment
5.
Comput Biol Med ; 66: 295-315, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26453760

ABSTRACT

Diabetic Macular Edema (DME) is caused by accumulation of extracellular fluid from hyperpermeable capillaries within the macula. DME is one of the leading causes of blindness among Diabetes Mellitus (DM) patients. Early detection followed by laser photocoagulation can save the visual loss. This review discusses various imaging modalities viz. biomicroscopy, Fluorescein Angiography (FA), Optical Coherence Tomography (OCT) and colour fundus photographs used for diagnosis of DME. Various automated DME grading systems using retinal fundus images, associated retinal image processing techniques for fovea, exudate detection and segmentation are presented. We have also compared various imaging modalities and automated screening methods used for DME grading. The reviewed literature indicates that FA and OCT identify DME related changes accurately. FA is an invasive method, which uses fluorescein dye, and OCT is an expensive imaging method compared to fundus photographs. Moreover, using fundus images DME can be identified and automated. DME grading algorithms can be implemented for telescreening. Hence, fundus imaging based DME grading is more suitable and affordable method compared to biomicroscopy, FA, and OCT modalities.


Subject(s)
Diabetic Retinopathy/diagnosis , Diagnostic Imaging/methods , Macular Edema/diagnosis , Automation , Diagnosis, Computer-Assisted , Equipment Design , Fluorescein/chemistry , Fluorescein Angiography/methods , Fovea Centralis/pathology , Fundus Oculi , Humans , Image Processing, Computer-Assisted , Pattern Recognition, Automated , Retina/pathology , Software , Tomography, Optical Coherence/methods
6.
Comput Biol Med ; 63: 208-18, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26093788

ABSTRACT

Age-related Macular Degeneration (AMD) is an irreversible and chronic medical condition characterized by drusen, Choroidal Neovascularization (CNV) and Geographic Atrophy (GA). AMD is one of the major causes of visual loss among elderly people. It is caused by the degeneration of cells in the macula which is responsible for central vision. AMD can be dry or wet type, however dry AMD is most common. It is classified into early, intermediate and late AMD. The early detection and treatment may help one to stop the progression of the disease. Automated AMD diagnosis may reduce the screening time of the clinicians. In this work, we have introduced LCP to characterize normal and AMD classes using fundus images. Linear Configuration Coefficients (CC) and Pattern Occurrence (PO) features are extracted from fundus images. These extracted features are ranked using p-value of the t-test and fed to various supervised classifiers viz. Decision Tree (DT), Nearest Neighbour (k-NN), Naive Bayes (NB), Probabilistic Neural Network (PNN) and Support Vector Machine (SVM) to classify normal and AMD classes. The performance of the system is evaluated using both private (Kasturba Medical Hospital, Manipal, India) and public domain datasets viz. Automated Retinal Image Analysis (ARIA) and STructured Analysis of the Retina (STARE) using ten-fold cross validation. The proposed approach yielded best performance with a highest average accuracy of 97.78%, sensitivity of 98.00% and specificity of 97.50% for STARE dataset using 22 significant features. Hence, this system can be used as an aiding tool to the clinicians during mass eye screening programs to diagnose AMD.


Subject(s)
Image Processing, Computer-Assisted/methods , Macular Degeneration/diagnosis , Retina/pathology , Support Vector Machine , Female , Humans , Male , Sensitivity and Specificity
7.
Med Biol Eng Comput ; 53(12): 1319-31, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25894464

ABSTRACT

Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39% for MESSIDOR dataset and 95.93 and 93.33% for local dataset, respectively.


Subject(s)
Diabetic Retinopathy/classification , Diabetic Retinopathy/diagnosis , Image Interpretation, Computer-Assisted/methods , Macular Edema/classification , Macular Edema/diagnosis , Adult , Diagnostic Techniques, Ophthalmological , Humans , Middle Aged , ROC Curve , Young Adult
8.
Proc Inst Mech Eng H ; 228(9): 962-70, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25234036

ABSTRACT

Identification of retinal landmarks is an important step in the extraction of anomalies in retinal fundus images. In the current study, we propose a technique to identify and localize the position of macula and hence the fovea avascular zone, in colour fundus images. The proposed method, based on varying blur scales in images, is independent of the location of other anatomical landmarks present in the fundus images. Experimental results have been provided using the open database MESSIDOR by validating our segmented regions using the dice coefficient, with ground truth segmentation provided by a human expert. Apart from testing the images on the entire MESSIDOR database, the proposed technique was also validated using 50 normal and 50 diabetic retinopathy chosen digital fundus images from the same database. A maximum overlap accuracy of 89.6%-93.8% and locational accuracy of 94.7%-98.9% was obtained for identification and localization of the fovea.


Subject(s)
Fovea Centralis/pathology , Fundus Oculi , Image Processing, Computer-Assisted/methods , Databases, Factual , Diabetic Retinopathy/pathology , Fovea Centralis/anatomy & histology , Humans , Photography
9.
Med Biol Eng Comput ; 52(9): 781-96, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25112273

ABSTRACT

Age-related macular degeneration (AMD) affects the central vision and subsequently may lead to visual loss in people over 60 years of age. There is no permanent cure for AMD, but early detection and successive treatment may improve the visual acuity. AMD is mainly classified into dry and wet type; however, dry AMD is more common in aging population. AMD is characterized by drusen, yellow pigmentation, and neovascularization. These lesions are examined through visual inspection of retinal fundus images by ophthalmologists. It is laborious, time-consuming, and resource-intensive. Hence, in this study, we have proposed an automated AMD detection system using discrete wavelet transform (DWT) and feature ranking strategies. The first four-order statistical moments (mean, variance, skewness, and kurtosis), energy, entropy, and Gini index-based features are extracted from DWT coefficients. We have used five (t test, Kullback-Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance, receiver operating characteristics curve-based, and Wilcoxon) feature ranking strategies to identify optimal feature set. A set of supervised classifiers namely support vector machine (SVM), decision tree, [Formula: see text]-nearest neighbor ([Formula: see text]-NN), Naive Bayes, and probabilistic neural network were used to evaluate the highest performance measure using minimum number of features in classifying normal and dry AMD classes. The proposed framework obtained an average accuracy of 93.70%, sensitivity of 91.11%, and specificity of 96.30% using KLD ranking and SVM classifier. We have also formulated an AMD Risk Index using selected features to classify the normal and dry AMD classes using one number. The proposed system can be used to assist the clinicians and also for mass AMD screening programs.


Subject(s)
Expert Systems/instrumentation , Macular Degeneration/diagnosis , Software , Wavelet Analysis , Aged , Aged, 80 and over , Bayes Theorem , Fundus Oculi , Humans , Image Processing, Computer-Assisted , Middle Aged , ROC Curve , Sensitivity and Specificity , Support Vector Machine
10.
Comput Biol Med ; 53: 55-64, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25127409

ABSTRACT

Age-related Macular Degeneration (AMD) is one of the major causes of vision loss and blindness in ageing population. Currently, there is no cure for AMD, however early detection and subsequent treatment may prevent the severe vision loss or slow the progression of the disease. AMD can be classified into two types: dry and wet AMDs. The people with macular degeneration are mostly affected by dry AMD. Early symptoms of AMD are formation of drusen and yellow pigmentation. These lesions are identified by manual inspection of fundus images by the ophthalmologists. It is a time consuming, tiresome process, and hence an automated diagnosis of AMD screening tool can aid clinicians in their diagnosis significantly. This study proposes an automated dry AMD detection system using various entropies (Shannon, Kapur, Renyi and Yager), Higher Order Spectra (HOS) bispectra features, Fractional Dimension (FD), and Gabor wavelet features extracted from greyscale fundus images. The features are ranked using t-test, Kullback-Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance (CBBD), Receiver Operating Characteristics (ROC) curve-based and Wilcoxon ranking methods in order to select optimum features and classified into normal and AMD classes using Naive Bayes (NB), k-Nearest Neighbour (k-NN), Probabilistic Neural Network (PNN), Decision Tree (DT) and Support Vector Machine (SVM) classifiers. The performance of the proposed system is evaluated using private (Kasturba Medical Hospital, Manipal, India), Automated Retinal Image Analysis (ARIA) and STructured Analysis of the Retina (STARE) datasets. The proposed system yielded the highest average classification accuracies of 90.19%, 95.07% and 95% with 42, 54 and 38 optimal ranked features using SVM classifier for private, ARIA and STARE datasets respectively. This automated AMD detection system can be used for mass fundus image screening and aid clinicians by making better use of their expertise on selected images that require further examination.


Subject(s)
Diagnostic Techniques, Ophthalmological , Image Interpretation, Computer-Assisted/methods , Macular Degeneration/diagnosis , Algorithms , Databases, Factual , Fundus Oculi , Humans , Models, Statistical , Wavelet Analysis
11.
Med Biol Eng Comput ; 52(8): 663-72, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24958614

ABSTRACT

Diabetic retinopathy (DR) is a leading cause of vision loss among diabetic patients in developed countries. Early detection of occurrence of DR can greatly help in effective treatment. Unfortunately, symptoms of DR do not show up till an advanced stage. To counter this, regular screening for DR is essential in diabetic patients. Due to lack of enough skilled medical professionals, this task can become tedious as the number of images to be screened becomes high with regular screening of diabetic patients. An automated DR screening system can help in early diagnosis without the need for a large number of medical professionals. To improve detection, several pattern recognition techniques are being developed. In our study, we used trace transforms to model a human visual system which would replicate the way a human observer views an image. To classify features extracted using this technique, we used support vector machine (SVM) with quadratic, polynomial, radial basis function kernels and probabilistic neural network (PNN). Genetic algorithm (GA) was used to fine tune classification parameters. We obtained an accuracy of 99.41 and 99.12% with PNN-GA and SVM quadratic kernels, respectively.


Subject(s)
Diabetic Retinopathy/diagnosis , Diagnosis, Computer-Assisted/methods , Fundus Oculi , Image Processing, Computer-Assisted , Adult , Humans , Middle Aged , Neural Networks, Computer , Support Vector Machine , Young Adult
12.
Technol Cancer Res Treat ; 13(6): 605-15, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24000991

ABSTRACT

Mammograms are one of the most widely used techniques for preliminary screening of breast cancers. There is great demand for early detection and diagnosis of breast cancer using mammograms. Texture based feature extraction techniques are widely used for mammographic image analysis. In specific, wavelets are a popular choice for texture analysis of these images. Though discrete wavelets have been used extensively for this purpose, spherical wavelets have rarely been used for Computer-Aided Diagnosis (CAD) of breast cancer using mammograms. In this work, a comparison of the performance between the features of Discrete Wavelet Transform (DWT) and Spherical Wavelet Transform (SWT) based on the classification results of normal, benign and malignant stage was studied. Classification was performed using Linear Discriminant Classifier (LDC), Quadratic Discriminant Classifier (QDC), Nearest Mean Classifier (NMC), Support Vector Machines (SVM) and Parzen Classifier (ParzenC). We have obtained a maximum classification accuracy of 81.73% for DWT and 88.80% for SWT features using SVM classifier.


Subject(s)
Breast Neoplasms/diagnosis , Diagnosis, Computer-Assisted , Mammography , Wavelet Analysis , Aged , Algorithms , Female , Humans , Image Processing, Computer-Assisted , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
13.
Comput Biol Med ; 43(12): 2136-55, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24290931

ABSTRACT

Diabetes mellitus may cause alterations in the retinal microvasculature leading to diabetic retinopathy. Unchecked, advanced diabetic retinopathy may lead to blindness. It can be tedious and time consuming to decipher subtle morphological changes in optic disk, microaneurysms, hemorrhage, blood vessels, macula, and exudates through manual inspection of fundus images. A computer aided diagnosis system can significantly reduce the burden on the ophthalmologists and may alleviate the inter and intra observer variability. This review discusses the available methods of various retinal feature extractions and automated analysis.


Subject(s)
Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/pathology , Diagnosis, Computer-Assisted/methods , Fundus Oculi , Image Processing, Computer-Assisted/methods , Female , Humans , Image Processing, Computer-Assisted/instrumentation , Male
14.
Int J Neural Syst ; 23(5): 1350023, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23924414

ABSTRACT

Intrinsic time-scale decomposition (ITD) is a new nonlinear method of time-frequency representation which can decipher the minute changes in the nonlinear EEG signals. In this work, we have automatically classified normal, interictal and ictal EEG signals using the features derived from the ITD representation. The energy, fractal dimension and sample entropy features computed on ITD representation coupled with decision tree classifier has yielded an average classification accuracy of 95.67%, sensitivity and specificity of 99% and 99.5%, respectively using 10-fold cross validation scheme. With application of the nonlinear ITD representation, along with conceptual advancement and improvement of the accuracy, the developed system is clinically ready for mass screening in resource constrained and emerging economy scenarios.


Subject(s)
Electroencephalography/methods , Seizures/diagnosis , Signal Processing, Computer-Assisted , Decision Trees , Humans , Nonlinear Dynamics , Sensitivity and Specificity
15.
Proc Inst Mech Eng H ; 227(1): 37-49, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23516954

ABSTRACT

The human eye is one of the most sophisticated organs, with perfectly interrelated retina, pupil, iris cornea, lens, and optic nerve. Automatic retinal image analysis is emerging as an important screening tool for early detection of eye diseases. Uncontrolled diabetic retinopathy (DR) and glaucoma may lead to blindness. The identification of retinal anatomical regions is a prerequisite for the computer-aided diagnosis of several retinal diseases. The manual examination of optic disk (OD) is a standard procedure used for detecting different stages of DR and glaucoma. In this article, a novel automated, reliable, and efficient OD localization and segmentation method using digital fundus images is proposed. General-purpose edge detection algorithms often fail to segment the OD due to fuzzy boundaries, inconsistent image contrast, or missing edge features. This article proposes a novel and probably the first method using the Attanassov intuitionistic fuzzy histon (A-IFSH)-based segmentation to detect OD in retinal fundus images. OD pixel intensity and column-wise neighborhood operation are employed to locate and isolate the OD. The method has been evaluated on 100 images comprising 30 normal, 39 glaucomatous, and 31 DR images. Our proposed method has yielded precision of 0.93, recall of 0.91, F-score of 0.92, and mean segmentation accuracy of 93.4%. We have also compared the performance of our proposed method with the Otsu and gradient vector flow (GVF) snake methods. Overall, our result shows the superiority of proposed fuzzy segmentation technique over other two segmentation methods.


Subject(s)
Diabetic Retinopathy/pathology , Fluorescein Angiography/methods , Fuzzy Logic , Glaucoma/pathology , Optic Disk/pathology , Pattern Recognition, Automated/methods , Retinoscopy/methods , Adult , Aged , Aged, 80 and over , Artificial Intelligence , Female , Humans , Image Interpretation, Computer-Assisted/methods , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Young Adult
16.
IEEE Rev Biomed Eng ; 6: 77-98, 2013.
Article in English | MEDLINE | ID: mdl-23247864

ABSTRACT

The American Cancer Society (ACS) recommends women aged 40 and above to have a mammogram every year and calls it a gold standard for breast cancer detection. Early detection of breast cancer can improve survival rates to a great extent. Inter-observer and intra-observer errors occur frequently in analysis of medical images, given the high variability between interpretations of different radiologists. Also, the sensitivity of mammographic screening varies with image quality and expertise of the radiologist. So, there is no golden standard for the screening process. To offset this variability and to standardize the diagnostic procedures, efforts are being made to develop automated techniques for diagnosis and grading of breast cancer images. A few papers have documented the general trend of computer-aided diagnosis of breast cancer, making a broad study of the several techniques involved. But, there is no definitive documentation focusing on the mathematical techniques used in breast cancer detection. This review aims at providing an overview about recent advances and developments in the field of Computer-Aided Diagnosis (CAD) of breast cancer using mammograms, specifically focusing on the mathematical aspects of the same, aiming to act as a mathematical primer for intermediates and experts in the field.


Subject(s)
Breast Neoplasms/diagnostic imaging , Mammography , Radiographic Image Interpretation, Computer-Assisted , Female , Humans
17.
Int J Neural Syst ; 22(6): 1250027, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23186276

ABSTRACT

Epilepsy is a global disease with considerable incidence due to recurrent unprovoked seizures. These seizures can be noninvasively diagnosed using electroencephalogram (EEG), a measure of neuronal electrical activity in brain recorded along scalp. EEG is highly nonlinear, nonstationary and non-Gaussian in nature. Nonlinear adaptive models such as empirical mode decomposition (EMD) provide intuitive understanding of information present in these signals. In this study a novel methodology is proposed to automatically classify EEG of normal, inter-ictal and ictal subjects using EMD decomposition. EEG decomposition using EMD yields few intrinsic mode functions (IMF), which are amplitude and frequency modulated (AM and FM) waves. Hilbert transform of these IMF provides AM and FM frequencies. Features such as spectral peaks, spectral entropy and spectral energy in each IMF are extracted and fed to decision tree classifier for automated diagnosis. In this work, we have compared the performance of classification using two types of decision trees (i) classification and regression tree (CART) and (ii) C4.5. We have obtained the highest average accuracy of 95.33%, average sensitivity of 98%, and average specificity of 97% using C4.5 decision tree classifier. The developed methodology is ready for clinical validation on large databases and can be deployed for mass screening.


Subject(s)
Brain Waves/physiology , Diagnosis, Computer-Assisted/statistics & numerical data , Electroencephalography/statistics & numerical data , Epilepsy/diagnosis , Epilepsy/physiopathology , Signal Processing, Computer-Assisted , Case-Control Studies , Decision Trees , Diagnosis, Computer-Assisted/methods , Electroencephalography/methods , Humans , Nonlinear Dynamics , Pattern Recognition, Automated/methods , Sensitivity and Specificity
18.
J Med Syst ; 36(4): 2483-91, 2012 Aug.
Article in English | MEDLINE | ID: mdl-21523426

ABSTRACT

Diabetes is a chronic disease that is characterized by an increased blood glucose level due to insulin resistance. Type 2 diabetes is common in middle aged and old people. In this work, we present a technique to analyze dynamic foot pressures images and classify them into normal, diabetes type 2 with and without neuropathy classes. Plantar pressure images were obtained using the F-Scan (Tekscan, USA) in-shoe measurement system. We used Principal Component Analysis (PCA) and extracted the eigenvalues from different regions of the foot image. The features extracted from region 1 of the foot pressure image, which were found to be clinically significant, were fed into the Fuzzy classifier (Sugeno model) for automatic classification. Our results show that the proposed method is able to identify the unknown class with an accuracy of 93.7%, sensitivity of 100%, and specificity of 83.3%. Moreover, in this work, we have proposed an integrated index using the eigenvalues to differentiate the normal subjects from diabetes with and without neuropathy subjects using just one number. This index will help the clinicians in easy and objective daily screening, and it can also be used as an adjunct tool to cross check their diagnosis.


Subject(s)
Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetic Foot/diagnosis , Diabetic Neuropathies/classification , Diagnosis, Computer-Assisted , Principal Component Analysis , Adult , Aged , Aged, 80 and over , Diabetic Foot/classification , Female , Fuzzy Logic , Humans , Image Interpretation, Computer-Assisted/methods , Male , Middle Aged , Sensitivity and Specificity , United States , Wavelet Analysis
19.
J Med Syst ; 36(3): 1731-43, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21222222

ABSTRACT

The classification of epileptic electroencephalogram (EEG) signals is challenging because of high nonlinearity, high dimensionality, and hidden states in EEG recordings. The detection of the preictal state is difficult due to its similarity to the ictal state. We present a framework for using principal components analysis (PCA) and a classification method for improving the detection rate of epileptic classes. To unearth the nonlinearity and high dimensionality in epileptic signals, we extract principal component features using PCA on the 15 high-order spectra (HOS) features extracted from the EEG data. We evaluate eight classifiers in the framework using true positive (TP) rate and area under curve (AUC) of receiver operating characteristics (ROC). We show that a simple logistic regression model achieves the highest TP rate for class "preictal" at 97.5% and the TP rate on average at 96.8% with PCA variance percentages selected at 100%, which also achieves the most AUC at 99.5%.


Subject(s)
Epilepsy/classification , Principal Component Analysis , Area Under Curve , Electroencephalography , Epilepsy/diagnosis , Humans , Neural Networks, Computer , Regression Analysis , Signal Processing, Computer-Assisted
20.
IEEE Trans Inf Technol Biomed ; 15(3): 449-55, 2011 May.
Article in English | MEDLINE | ID: mdl-21349793

ABSTRACT

Glaucoma is the second leading cause of blindness worldwide. It is a disease in which fluid pressure in the eye increases continuously, damaging the optic nerve and causing vision loss. Computational decision support systems for the early detection of glaucoma can help prevent this complication. The retinal optic nerve fiber layer can be assessed using optical coherence tomography, scanning laser polarimetry, and Heidelberg retina tomography scanning methods. In this paper, we present a novel method for glaucoma detection using a combination of texture and higher order spectra (HOS) features from digital fundus images. Support vector machine, sequential minimal optimization, naive Bayesian, and random-forest classifiers are used to perform supervised classification. Our results demonstrate that the texture and HOS features after z-score normalization and feature selection, and when combined with a random-forest classifier, performs better than the other classifiers and correctly identifies the glaucoma images with an accuracy of more than 91%. The impact of feature ranking and normalization is also studied to improve results. Our proposed novel features are clinically significant and can be used to detect glaucoma accurately.


Subject(s)
Diagnosis, Computer-Assisted/methods , Diagnostic Techniques, Ophthalmological , Fundus Oculi , Glaucoma/diagnosis , Image Processing, Computer-Assisted/methods , Adult , Aged , Algorithms , Glaucoma/pathology , Humans , Middle Aged , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...