Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 179(14): 3754-3777, 2022 07.
Article in English | MEDLINE | ID: mdl-35170022

ABSTRACT

BACKGROUND AND PURPOSE: Anticonvulsants targeting K+ channels have not been clinically available, although neuronal hyperexcitability in seizures could be suppressed by activation of K+ channels. Voltage-gated A-type K+ channel (A-channel) inhibitors may be prescribed for diseases of neuromuscular junction but could cause seizures. Consistently, genetic loss of function of A-channels may also cause seizures. It is unclear why inhibition of A-channels, compared with other types of K+ channels, is particularly prone to seizure induction. This hinders the development of relevant therapeutic interventions. EXPERIMENTAL APPROACH: Mechanisms underlying epileptogenesis with A-channel inhibition and antiepileptic actions of A-channel activation were investigated with electrophysiological, pharmacological, optogenetic, and behavioral approaches. KEY RESULTS: Pre-synaptic KV 1.4 and post-synaptic KV 4.3 A-channels act synergistically to gate glutamatergic transmission and control rhythmogenesis in the amygdala. The interconnected neurons set into the oscillatory mode by A-channel inhibition would reverberate with regular paces and the same top frequency, demonstrating a spatio-temporally well-orchestrated system with built-in oscillatory rhythms normally curbed by A-channels. Accordingly, selective over-excitation of glutamatergic neurons or inhibition of A-channels can induce behavioural seizures, which may be ameliorated by A-channel activators (e.g. NS-5806) or AMPA receptor antagonists (e.g. perampanel). CONCLUSION AND IMPLICATIONS: Trans-synaptic voltage-dependent A-channels serve as a biophysical-biochemical transducer responsible for a novel form of synaptic plasticity. Such a network-level switch into and out of the oscillatory mode may underlie a wide scope of telencephalic information processing or, at its extreme, epileptic seizures. A-channels thus constitute a potential target of antiepileptic therapy.


Subject(s)
Anticonvulsants , Seizures , Amygdala , Anticonvulsants/pharmacology , Humans , Neuronal Plasticity , Neurons , Seizures/drug therapy
2.
Cell Rep ; 35(3): 109007, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33882305

ABSTRACT

Parkinson's disease is characterized by both hypokinetic and hyperkinetic symptoms. While increased subthalamic burst discharges have a direct causal relationship with the hypokinetic manifestations (e.g., rigidity and bradykinesia), the origin of the hyperkinetic symptoms (e.g., resting tremor and propulsive gait) has remained obscure. Neuronal burst discharges are presumed to be autonomous or less responsive to synaptic input, thereby interrupting the information flow. We, however, demonstrate that subthalamic burst discharges are dependent on cortical glutamatergic synaptic input, which is enhanced by A-type K+ channel inhibition. Excessive top-down-triggered subthalamic burst discharges then drive highly correlative activities bottom-up in the motor cortices and skeletal muscles. This leads to hyperkinetic behaviors such as tremors, which are effectively ameliorated by inhibition of cortico-subthalamic AMPAergic synaptic transmission. We conclude that subthalamic burst discharges play an imperative role in cortico-subcortical information relay, and they critically contribute to the pathogenesis of both hypokinetic and hyperkinetic parkinsonian symptoms.


Subject(s)
Globus Pallidus/physiopathology , Hyperkinesis/physiopathology , Motor Cortex/physiopathology , Parkinson Disease, Secondary/physiopathology , Subthalamic Nucleus/physiopathology , Tremor/physiopathology , 4-Aminopyridine/pharmacology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Animals , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Female , Globus Pallidus/drug effects , Globus Pallidus/metabolism , Glutamic Acid/metabolism , Glutamic Acid/pharmacology , Humans , Hyperkinesis/metabolism , Male , Membrane Potentials/drug effects , Mice, Inbred C57BL , Motor Cortex/drug effects , Motor Cortex/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Optogenetics/methods , Parkinson Disease, Secondary/metabolism , Rats , Rats, Wistar , Subthalamic Nucleus/drug effects , Subthalamic Nucleus/metabolism , Synapses/drug effects , Synapses/metabolism , Synapses/pathology , Synaptic Transmission , Tremor/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
3.
Br J Pharmacol ; 177(22): 5177-5194, 2020 11.
Article in English | MEDLINE | ID: mdl-32901915

ABSTRACT

BACKGROUND AND PURPOSE: Perampanel is a newly approved anticonvulsant uniquely targeting AMPA receptors, which mediate the most abundant form of excitatory synaptic transmission in the brain. However, the network mechanism underlying the anti-epileptic effect of the AMPAergic inhibition remains to be explored. EXPERIMENTAL APPROACH: The mechanism of perampanel action was studied with the basolateral amygdala network containing pyramidal-inhibitory neuronal resonators in seizure models of 4-aminopyridine (4-AP) and electrical kindling. KEY RESULTS: Application of either 4-AP or electrical kindling to the basolateral amygdala readily induces AMPAergic transmission-dependent reverberating activities between pyramidal-inhibitory neuronal resonators, which are chiefly characterized by burst discharges in inhibitory neurons and corresponding recurrent inhibitory postsynaptic potentials in pyramidal neurons. Perampanel reduces post-kindling "paroxysmal depolarizing shift" especially in pyramidal neurons and, counterintuitively, eliminates burst activities in inhibitory neurons and inhibitory synaptic inputs onto excitatory pyramidal neurons to result in prevention of epileptiform discharges and seizure behaviours. Intriguingly, similar effects can be obtained with not only the AMPA receptor antagonist CNQX but also the GABAA receptor antagonist bicuculline, which is usually considered as a proconvulsant. CONCLUSION AND IMPLICATIONS: Ictogenesis depends on the AMPA receptor-dependent recruitment of pyramidal-inhibitory neuronal network oscillations tuned by dynamic glutamatergic and GABAergic transmission. The anticonvulsant effect of perampanel then stems from disruption of the coordinated network activities rather than simply decreased neuronal excitability or excitatory transmission. Positive or negative modulation of epileptic network reverberations may be pro-ictogenic or anti-ictogenic, respectively, constituting a more applicable rationale for the therapy against seizures.


Subject(s)
Neurons , Synaptic Transmission , Nitriles , Pyramidal Cells , Pyridones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...