Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 265(Pt 2): 130945, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493818

ABSTRACT

INTRODUCTION: Immune checkpoint inhibitor therapy is a highly promising strategy for clinical treatment of cancer. Among these inhibitors, ipilimumab stands out for its ability to induce cytotoxic T cell proliferation and activation by binding to CTLA-4. However, ipilimumab also gives rise to systemic immune-related adverse effects and tumor immune evasion, limiting its effectiveness. OBJECTIVES: We developed IFNγ-ipilimumab and confirmed that the addition of INF-γ does not alter the fundamental properties of ipilimumab. RESULTS: IFNγ-ipilimumab can be activated by matrix metalloproteinases, thereby promoting the IFNγ signaling pathway and enhancing the cytotoxicity of T cells. In vivo studies demonstrated that IFNγ-ipilimumab enhances the therapeutic effect of ipilimumab against colorectal cancer by increasing CD8+ and CD4+ lymphocyte infiltration into the tumor area and inducing MHC-I expression in tumor cells. Mice treated with IFNγ-ipilimumab showed higher survival rates and body weight, as well as lower CD4+ and CD8+ lymphocyte activation rates in the blood and reduced organ damage. CONCLUSION: IFNγ-ipilimumab improved the effectiveness of ipilimumab while reducing its side effects. It is likely that future immunotherapies would rely on such antibodies to activate local cancer cells or immune cells, thereby increasing the therapeutic effectiveness of cancer treatments and ensuring their safety.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Mice , Ipilimumab/pharmacology , Ipilimumab/therapeutic use , Antibodies, Monoclonal/adverse effects , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , T-Lymphocytes, Cytotoxic
2.
J Virol ; 98(4): e0125823, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38546211

ABSTRACT

Dengue fever, an infectious disease prevalent in subtropical and tropical regions, currently lacks effective small-molecule drugs as treatment. In this study, we used a fluorescence peptide cleavage assay to screen seven compounds to assess their inhibition of the dengue virus (DENV) NS2B-NS3 protease. DV-B-120 demonstrated superior inhibition of NS2B-NS3 protease activity and lower toxicity compared to ARDP0006. The selectivity index of DV-B-120 was higher than that of ARDP0006. In vivo assessments of the antiviral efficacy of DV-B-120 against DENV replication demonstrated delayed mortality of suckling mice treated with the compound, with 60-80% protection against life-threatening effects, compared to the outcomes of DENV-infected mice treated with saline. The lower clinical scores of DENV-infected mice treated with DV-B-120 indicated a reduction in acute-progressive illness symptoms, underscoring the potential therapeutic impact of DV-B-120. Investigations of DV-B-120's ability to restore the antiviral type I IFN response in the brain tissue of DENV-infected ICR suckling mice demonstrated its capacity to stimulate IFN and antiviral IFN-stimulated gene expression. DV-B-120 not only significantly delayed DENV-2-induced mortality and illness symptoms but also reduced viral numbers in the brain, ultimately restoring the innate antiviral response. These findings strongly suggest that DV-B-120 holds promise as a therapeutic agent against DENV infection and highlight its potential contribution in addressing the current lack of effective treatments for this infectious disease.IMPORTANCEThe prevalence of dengue virus (DENV) infection in tropical and subtropical regions is escalating due to factors like climate change and mosquito vector expansion. With over 300 million annual infections and potentially fatal outcomes, the urgent need for effective treatments is evident. While the approved Dengvaxia vaccine has variable efficacy, there are currently no antiviral drugs for DENV. This study explores seven compounds targeting the NS2B-NS3 protease, a crucial protein in DENV replication. These compounds exhibit inhibitory effects on DENV-2 NS2B-NS3, holding promise for disrupting viral replication and preventing severe manifestations. However, further research, including animal testing, is imperative to assess therapeutic efficacy and potential toxicity. Developing safe and potent treatments for DENV infection is critical in addressing the rising global health threat posed by this virus.


Subject(s)
Dengue Virus , Dengue , Piperidines , Animals , Mice , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Communicable Diseases , Dengue/drug therapy , Dengue Virus/physiology , Endopeptidases/pharmacology , Mice, Inbred ICR , Piperidines/administration & dosage , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/chemistry
3.
Cells ; 12(11)2023 05 25.
Article in English | MEDLINE | ID: mdl-37296596

ABSTRACT

5-FU-based chemoradiotherapy (CRT) and oxaliplatin-based CRT are commonly used therapies for advanced colorectal cancer (CRC). However, patients with a high expression of ERCC1 have a worse prognosis than those with a low expression. In this study, we investigated the effect of XPF-ERCC1 blockers on chemotherapy and 5-FU-based CRT and oxaliplatin (OXA)-based CRT in colorectal cancer cell lines. We investigated the half-maximal inhibitory concentration (IC50) of 5-FU, OXA, XPF-ERCC1 blocker, and XPF-ERCC1 blocker, and 5-FU or OXA combined and analyzed the effect of XPF-ERCC1 blocker on 5-FU-based CRT and oxaliplatin-based CRT. Furthermore, the expression of XPF and γ-H2AX in colorectal cells was analyzed. In animal models, we combined the XPF-ERCC1 blocker with 5-FU and OXA to investigate the effects of RC and finally combined the XPF-ERCC1 blocker with 5-FU- and oxaliplatin-based CRT. In the IC50 analysis of each compound, the cytotoxicity of the XPF-ERCC1 blocker was lower than that of 5-FU and OXA. In addition, the XPF-ERCC1 blocker combined with 5-FU or OXA enhanced the cytotoxicity of the chemotherapy drugs in colorectal cells. Furthermore, the XPF-ERCC1 blocker also increased the cytotoxicity of 5-FU-based CRT and OXA -based CRT by inhibiting the XPF product DNA locus. In vivo, the XPF-ERCC1 blocker was confirmed to enhance the therapeutic efficacy of 5-FU, OXA, 5-FU-based CRT, and OXA CRT. These findings show that XPF-ERCC1 blockers not only increase the toxicity of chemotherapy drugs but also increase the efficacy of combined chemoradiotherapy. In the future, the XPF-ERCC1 blocker may be used to improve the efficacy of 5-FU- and oxaliplatin-based CRT.


Subject(s)
Colorectal Neoplasms , Fluorouracil , Animals , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , DNA-Binding Proteins/metabolism , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/etiology , Chemoradiotherapy
4.
Virus Res ; 329: 199092, 2023 05.
Article in English | MEDLINE | ID: mdl-36965673

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne flavivirus that causes severe neurological disorders, such as microcephaly in fetuses. Most recently, an outbreak of ZIKV started in Brazil in 2015. To date, no therapeutic agents have been approved to treat ZIKV infection in the clinic. Here, we screened a small molecule inhibitor that can inhibit the function of ZIKV non-structural protein 2B (NS2B)-NS3 protease (ZIKV NS2B-NS3 protease), thereby interfering with viral replication and spread. First, we identified the half maximal inhibitory concentration (IC50) of compound 3 (14.01 µM), 8 (6.85 µM), and 9 (14.2 µM) and confirmed that they are all non-competitive inhibitors. In addition, we have used the blind molecular docking method to simulate the inhibition area of three non-competitive inhibitors (compound 3, 8, and 9) with the ZIKV NS2B-NS3 protease. The results indicated that the four allosteric binding residues (Gln139, Trp148, Leu150, and Val220) could form hydrogen bonds or non-bonding interactions most frequently with the three compounds. The interaction might induce the reaction center conformation change of NS2B-NS3 protease to reduce catalyzed efficiency. The concentration of compounds required to reduce cell viability by 50% (CC50), and the concentration of compounds required to inhibit virus-induced cytopathic effect by 50% (EC50) of three potential compounds are >200 µM, 2.15 µM (compound 3), > 200 µM, 0.52 µM (compound 8) and 61.48 µM, 3.52 µM (compound 9), and Temoporfin are 61.05 µM, 2 µM, respectively. To select candidate compounds for further animal experiments, we analyzed the selectivity index (SI) of compound 3 (93.02), 8 (384.61), 9 (17.46), and Temoporfin (30.53, FDA-approved drug against cancer). Compound 8 has the highest SI value. Therefore, compound 8 was selected for verification in animal models. In vivo, compound 8 significantly delayed ZIKV-induced lethality and illness symptoms and decreased ZIKV-induced weight loss in a ZIKV-infected suckling mouse model. We conclude that compound 8 is worth further investigation for use as a potential future therapeutic agent against ZIKV infection.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Mice , Zika Virus/physiology , Protease Inhibitors/pharmacology , Molecular Docking Simulation , Viral Nonstructural Proteins/chemistry , Antiviral Agents/therapeutic use , Enzyme Inhibitors/metabolism , Virus Replication , Serine Endopeptidases/metabolism , Peptide Hydrolases/metabolism
5.
Front Microbiol ; 13: 896588, 2022.
Article in English | MEDLINE | ID: mdl-36406412

ABSTRACT

Hepatitis C virus (HCV) NS3/4A protease is an attractive target for direct-acting antiviral agents. Real-time tracking of the NS3/4A protease distribution and activity is useful for clinical diagnosis and disease management. However, no approach has been developed that can systemically detect NS3/4A protease activity or distribution. We designed a protease-activatable retention probe for tracking HCV NS3/4A protease activity via positron emission topography (PET) imaging. A cell-penetrating probe was designed that consisted of a cell-penetrating Tat peptide, HCV NS3/4A protease substrate, and a hydrophilic domain. The probe was labeled by fluorescein isothiocyanate (FITC) and 124I in the hydrophilic domain to form a TAT-ΔNS3/4A-124I-FITC probe. Upon cleavage at NS3/4A substrate, the non-penetrating hydrophilic domain is released and accumulated in the cytoplasm allowing PET or optical imaging. The TAT-ΔNS3/4A-FITC probe selectively accumulated in NS3/4A-expressing HCC36 (NS3/4A-HCC36) cells/tumors and HCV-infected HCC36 cells. PET imaging showed that the TAT-ΔNS3/4A-124I-FITC probe selectively accumulated in the NS3/4A-HCC36 xenograft tumors and liver-implanted NS3/4A-HCC36 tumors, but not in the control HCC36 tumors. The TAT-ΔNS3/4A-124I-FITC probe can be used to represent NS3/4 protease activity and distribution via a clinical PET imaging system allowing. This strategy may be extended to detect any cellular protease activity for optimization the protease-based therapies.

6.
Cancers (Basel) ; 14(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36230725

ABSTRACT

Preoperative concurrent chemoradiotherapy (CCRT) is a standard treatment for locally advanced rectal cancer patients, but 20-30% do not benefit from the desired therapeutic effects. Previous reports indicate that high levels of ERCC1 reduce the effectiveness of cisplatin-based CCRT; however, it remains unclear as to whether ERCC1 overexpression increases radiation resistance. To clarify the correlation between ERCC1 levels and radiation (RT) resistance, we established two cell lines (HCT116-Tet-on and COLO205-Tet-on), induced them to overexpress ERCC1, detected cell survival following exposure to radiation, established HCT116-Tet-on and COLO205-Tet-on heterotopic cancer animal models, and detected tumor volume following exposure to radiation. We found that ERCC1 overexpression increased radiation resistance. After regulating ERCC1 levels and radiation exposure to verify the correlation, we noted that increased radiation resistance was dependent on ERCC1 upregulation in both cell lines. For further verification, we exposed HCT116-Tet-on and COLO205-Tet-on heterotopic cancer animal models to radiation and observed that ERCC1 overexpression increased colorectal cancer tumor radioresistance in both. Combined, our results suggest that ERCC1 overexpression may serve as a suitable CCRT prognostic marker for colorectal cancer patients.

7.
Cancers (Basel) ; 14(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36011045

ABSTRACT

Purpose: Preoperative concurrent chemoradiotherapy (CCRT) is the standard treatment for locally advanced rectal cancer patients. However, the poor therapeutic efficacy of CCRT was found in rectal cancer patients with hyperglycemia. This study investigated how hyperglycemia affects radiochemotherapy resistance in rectal cancer. Methods and Materials: We analyzed the correlation between prognosis indexes with hypoxia-inducible factor-1 alpha (HIF-1α) in rectal cancer patients with preoperative CCRT. In vitro, we investigated the effect of different concentrated glucose of environments on the radiation tolerance of rectal cancers. Further, we analyzed the combined HIF-1α inhibitor with radiation therapy in hyperglycemic rectal cancers. Results: The prognosis indexes of euglycemic or hyperglycemic rectal cancer patients after receiving CCRT treatment were investigated. The hyperglycemic rectal cancer patients (n = 13, glycosylated hemoglobin, HbA1c > 6.5%) had poorer prognosis indexes. In addition, a positive correlation was observed between HIF-1α expression and HbA1c levels (p = 0.046). Therefore, it is very important to clarify the relationship between HIF-1α and poor response in patients with hyperglycemia receiving pre-operative CCRT. Under a high glucose environment, rectal cancer cells express higher levels of glucose transport 1 (GLUT1), O-GlcNAc transferase (OGT), and HIF-1α, suggesting that the high glucose environment might stimulate HIF-1α expression through the GLUT1-OGT-HIF-1α pathway promoting tolerance to Fluorouracil (5-FU) and radiation. In the hyperglycemic rectal cancer animal model, rectal cancer cells confirmed that radiation exposure reduces apoptosis by overexpressing HIF-1α. Combining HIF-1α inhibitors was able to reverse radioresistance in a high glucose environment. Lower HIF-1α levels increased DNA damage in tumors leading to apoptosis. Conclusions: The findings here show that hyperglycemia induces the expression of GLUT1, OGT, and HIF-1α to cause CCRT tolerance in rectal cancer and suggest that combining HIF-1α inhibitors could reverse radioresistance in a high glucose environment. HIF-1α inhibitors may be useful for development as CCRT sensitizers in patients with hyperglycemic rectal cancer.

8.
Pharmacol Res ; 177: 106115, 2022 03.
Article in English | MEDLINE | ID: mdl-35124207

ABSTRACT

The bidirectional interaction between carcinogens and gut microbiota that contributes to colorectal cancer is complicated. Reactivation of carcinogen metabolites by microbial ß-glucuronidase (ßG) in the gut potentially plays an important role in colorectal carcinogenesis. We assessed the chemoprotective effects and associated changes in gut microbiota induced by pre-administration of bacterial-specific ßG inhibitor TCH-3511 in carcinogen azoxymethane (AOM)-treated APCMin/+ mice. AOM induced intestinal ßG activity, which was reflected in increases in the incidence, formation, and number of tumors in the intestine. Notably, inhibition of gut microbial ßG by TCH-3511 significantly reduced AOM-induced intestinal ßG activity, decreased the number of polyps in both the small and large intestine to a frequency that was similar in mice without AOM exposure. AOM also led to lower diversity and altered composition in the gut microbiota with a significant increase in mucin-degrading Akkermansia genus. Conversely, mice treated with TCH-3511 and AOM exhibited a more similar gut microbiota structure as mice without AOM administration. Importantly, TCH-3511 treatment significant decreased Akkermansia genus and produced a concomitant increase in short-chain fatty acid butyrate-producing gut commensal microbes Lachnoospiraceae NK4A136 group genus in AOM-treated mice. Taken together, our results reveal a key role of gut microbial ßG in promoting AOM-induced gut microbial dysbiosis and intestinal tumorigenesis, indicating the chemoprotective benefit of gut microbial ßG inhibition against carcinogens via maintaining the gut microbiota balance and preventing cancer-associated gut microbial dysbiosis. Thus, the bacterial-specific ßG inhibitor TCH-3511 is a potential chemoprevention agent for colorectal cancer.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Animals , Azoxymethane/toxicity , Bacteria , Carcinogenesis , Carcinogens/toxicity , Cell Transformation, Neoplastic , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/prevention & control , Dysbiosis/prevention & control , Glucuronidase , Mice
9.
Biology (Basel) ; 11(2)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35205146

ABSTRACT

In recent years, ciliate infections have caused serious casualties to corals in the ocean. Infected corals die within a short period of time, which not only poses a threat to wild coral reefs, but also has a major impact on large scale aquaculture of coral. Clove is a kind of Chinese medicine with antifungal, antibacterial, antiviral, insecticidal, and other functions. Clove is a natural product. If it can be used in the treatment of coral ciliates, it will reduce this threat to the environment. The clove extract was diluted with sterile seawater to 500 ppm, 1500 ppm, 2500 ppm, 5000 ppm, 7500 ppm, and 10,000 ppm to carry out virulence test on ciliates. The results show that the LC50 value is 1500 ppm, which can cause the death of ciliates in 10 min without causing significant changes in G. columna SOD, CAT, chlorophyll a, and zooxanthellae. In addition, observation of tissue slices revealed that no ciliates and vacuum were found in the G. columna tissue after 10 min of medicated bathing. In summary, 1500 ppm of clove extract can be used for the treatment of coral ciliates.

10.
Chem Sci ; 12(28): 9759-9769, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34349949

ABSTRACT

The on-target toxicity of monoclonal antibodies (Abs) is mainly due to the fact that Abs cannot distinguish target antigens (Ags) expressed in disease regions from those in normal tissues during systemic administration. In order to overcome this issue, we "copied" an autologous Ab hinge as an "Ab lock" and "pasted" it on the binding site of the Ab by connecting a protease substrate and linker in between to generate a pro-Ab, which can be specifically activated in the disease region to enhance Ab selectivity and reduce side effects. Previously, we reported that 70% of pro-Abs can achieve more than 100-fold blocking ability compared to the parental Abs. However, 30% of pro-Abs do not have such efficient blocking ability. This is because the same Ab lock linker cannot be applied to every Ab due to the differences in the complementarity-determining region (CDR) loops. Here we designed a method which uses structure-based computational simulation (MSCS) to optimize the blocking ability of the Ab lock for all Ab drugs. MSCS can precisely adjust the amino acid composition of the linker between the Ab lock and Ab drug with the assistance of molecular simulation. We selected αPD-1, αIL-1ß, αCTLA-4 and αTNFα Ab as models and attached the Ab lock with various linkers (L1 to L7) to form pro-Abs by MSCS, respectively. The resulting cover rates of the Ab lock with various linkers compared to the Ab drug were in the range 28.33-42.33%. The recombinant pro-Abs were generated by MSCS prediction in order to verify the application of molecular simulation for pro-Ab development. The binding kinetics effective concentrations (EC-50) for αPD-1 (200-250-fold), αIL-1ß (152-186-fold), αCTLA-4 (68-150-fold) and αTNFα Ab (20-123-fold) were presented as the blocking ability of pro-Ab compared to the Ab drug. Further, there was a positive correlation between cover rate and blocking ability of all pro-Ab candidates. The results suggested that MSCS was able to predict the Ab lock linker most suitable for application to αPD-1, αIL-1ß, αCTLA-4 and αTNFα Ab to form pro-Abs efficiently. The success of MSCS in optimizing the pro-Ab can aid the development of next-generation pro-Ab drugs to significantly improve Ab-based therapies and thus patients' quality of life.

12.
Int J Pharm ; 607: 121030, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34438007

ABSTRACT

The aim of the study was to prepare catechin-loaded transfersomes to enhance drug permeability through topical administration for the skin protection against ultraviolet radiation induced photo-damage. The results showed that the catechin-loaded transfersomes were monodispersed with polydispersity index (PDI) < 0.2, <200 nm in particle size and with high encapsulation efficiency (E.E.%) greater than 85%. The in vitro skin permeation test indicated that the catechin-loaded transfersomes enhanced the skin permeability by 85% compared to the catechin aqueous solution. Similarly, the in-vivo skin whitening study demonstrated that F5 transfersome formulation was effective in tyrosinase inhibition and had good biocompatibility to the guinea pig skin. Finally, the stability study showed that both physicochemical properties and E.E.% of the F5 transferosome formulation were fairly stable after 3 months storage. Therefore, topical administration of catechin-loaded transfersomes could be considered as a potential strategy for the treatment of UV-induced oxidative damage to the skin.


Subject(s)
Catechin , Administration, Cutaneous , Drug Carriers , Particle Size , Permeability , Skin , Ultraviolet Rays
13.
Sci Rep ; 11(1): 14846, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290297

ABSTRACT

Canakinumab is a fully human monoclonal antibody that specifically neutralizes human interleukin (IL)-1ß and has been approved by the US Food and Drug Administration for treating different types of autoinflammatory disorders such as cryopyrin-associated periodic syndrome, tumor necrosis factor receptor-associated periodic syndrome and systemic juvenile idiopathic arthritis. However, long-term systemic neutralization of IL-1ß by Canakinumab may cause severe adverse events such as serious upper respiratory tract infections and inflammation, thereby decreasing the quality of life of patients. Here, we used an IgG1 hinge as an Ab lock to cover the IL-1ß-binding site of Canakinumab by linking with matrix metalloprotease 9 (MMP-9) substrate to generate pro-Canakinumab that can be specifically activated in the inflamed regions in autoinflammatory diseases to enhance the selectivity and safety of treatment. The Ab lock significantly inhibited the IL-1ß-binding by 68-fold compared with Canakinumab, and MMP-9 completely restored the IL-1ß neutralizing ability of pro-Canakinumab within 60 min and blocked IL-1ß-downstream signaling and IL-1ß-regulated genes (i.e., IL-6). It is expected that MMP-9 cleavable and efficient Ab lock will be able to significantly enhance the selective reaction of Canakinumab at the disease site and reduce the on-target toxicities of Canakinumab during systemic circulation, thereby showing potential for development to improve the safety and quality of life of patients with autoinflammatory disorders in the future.


Subject(s)
Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Arthritis, Juvenile/therapy , Cryopyrin-Associated Periodic Syndromes/therapy , Interleukin-1beta/immunology , A549 Cells , Antibodies, Monoclonal, Humanized/metabolism , Binding Sites , HEK293 Cells , Humans , Interleukin-1beta/metabolism , Matrix Metalloproteinase 9/metabolism
14.
Cancers (Basel) ; 12(9)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911820

ABSTRACT

Lymph node metastasis is an aggressive condition characterized by poor treatment outcomes and low overall survival. Belinostat is a novel histone deacetylase (HDAC) inhibitor approved by the Food and Drug Administration (FDA) for the treatment of relapsed peripheral T-cell lymphoma (PTCL). However, the major problem is that belinostat has a short half-life of 1.1 h. In this study, we successfully prepared 50 nm liposomal colloids, which showed a controlled release pattern and excellent pharmacokinetics. The results showed that the particle size of liposomes consisting of dioleoylphosphatidylcholine (DOPC) was larger than that of those consisting of dioleoylglycerophosphoserine (DOPS). In terms of release kinetics of belinostat, the free drug was rapidly released and showed lower area under curve (AUC) exposure for in vivo pharmacokinetics. When liposomal formulations were employed, the release pattern was fitted with Hixson-Crowell models and showed sustained release of belinostat. Moreover, HuT-78 cells were able to take up all the liposomes in a concentration-dependent manner. The safety assessment confirmed hemocompatibility, and the platelet count was increased. Furthermore, the liposomes consisting of DOPC or DOPS had different behavior patterns, and their delivery to lymphatic regions should be thoroughly investigated in the future.

15.
J Biomed Sci ; 27(1): 76, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32586313

ABSTRACT

Monoclonal antibodies (mAbs) are a major targeted therapy for malignancies, infectious diseases, autoimmune diseases, transplant rejection and chronic inflammatory diseases due to their antigen specificity and longer half-life than conventional drugs. However, long-term systemic antigen neutralization by mAbs may cause severe adverse events. Improving the selectivity of mAbs to distinguish target antigens at the disease site from normal healthy tissue and reducing severe adverse events caused by the mechanisms-of-action of mAbs is still a pressing need. Development of pro-antibodies (pro-Abs) by installing a protease-cleavable Ab lock is a novel and advanced recombinant Ab-based strategy that efficiently masks the antigen binding ability of mAbs in the normal state and selectively "turns on" the mAb activity when the pro-Ab reaches the proteolytic protease-overexpressed diseased tissue. In this review, we discuss the design and advantages/disadvantages of different Ab lock strategies, focusing particularly on spatial-hindrance-based and affinity peptide-based approaches. We expect that the development of different masking strategies for mAbs will benefit the local reactivity of mAbs at the disease site, increase the therapeutic efficacy and safety of long-term treatment with mAbs in chronic diseases and even permit scientists to develop Ab drugs for formerly undruggable targets and satisfy the unmet medical needs of mAb therapy.


Subject(s)
Antibodies, Monoclonal/metabolism , Immunoconjugates/adverse effects , Animals , Humans
16.
Acta Biomater ; 111: 386-397, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32417267

ABSTRACT

Targeted antibodies and methoxy-PEGylated nanocarriers have gradually become a mainstream of cancer therapy. To increase the anti-cancer effects of targeted antibodies combined with mPEGylated liposomes (mPEG-liposomes), we describe a bispecific antibody in which an anti-methoxy-polyethylene glycol scFv (αmPEG scFv) was fused to the C-terminus of an anti-HER2 (αHER2) antibody to generate a HER2 × mPEG BsAb that retained the original efficacy of a targeted antibody while actively attracting mPEG-liposomes to accumulate at tumor sites. HER2 ×mPEG BsAb can simultaneously bind to HER2-high expressing MCF7/HER2 tumor cells and mPEG molecules on mPEG-liposomal doxorubicin (Lipo-Dox). Pre-incubation of HER2 × mPEG BsAb with cells increased the endocytosis of Lipo-DiD and enhanced the cytotoxicity of Lipo-Dox to MCF7/HER2 tumor cells. Furthermore, pre-treatment of HER2 × mPEG BsAb enhanced the tumor accumulation and retention of Lipo-DiR 2.2-fold in HER2-high expressing MCF7/HER2 tumors as compared to HER2-low expressing MCF7/neo1 tumors. Importantly, HER2 × mPEG BsAb plus Lipo-Dox significantly suppressed tumor growth as compared to control BsAb plus Lipo-Dox in MCF7/HER2 tumor-bearing mice. These results indicate that HER2 × mPEG BsAb can enhance tumor accumulation of mPEG-liposomes to improve the therapeutic efficacy of combination treatment. Anti-mPEG scFv can be fused to any kind of targeted antibody to generate BsAbs to actively attract mPEG-drugs and improve anti-cancer efficacy. STATEMENT OF SIGNIFICANCE: Antibody targeted therapy and PEGylated drugs have gradually become the mainstream of cancer therapy. To enhance the anti-cancer effects of targeted antibodies combined with PEGylated drugs is very important. To this aim, we fused an anti-PEG scFv to the C-terminal of HER2 targeted antibodies to generate a HER2×mPEG bispecific antibody (BsAb) to retain the original efficacy of targeted antibody whilst actively attract mPEG-liposomal drugs to accumulate at tumor sites. The present study demonstrates pre-treatment of HER2×mPEG BsAb can enhance tumor accumulation of mPEG-liposomal drugs to improve the therapeutic efficacy of combination treatment. Anti-mPEG scFv can be fused to any kind of targeted antibody to generate BsAbs to actively attract mPEG-drugs and improve anti-cancer efficacy.


Subject(s)
Antibodies, Bispecific , Liposomes , Animals , Antibodies, Bispecific/pharmacology , Cell Line, Tumor , Doxorubicin/pharmacology , Humans , MCF-7 Cells , Mice , Polyethylene Glycols , Receptor, ErbB-2
17.
Pharmaceutics ; 11(11)2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31683822

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with a worse prognosis than other types. There are currently no specific approved treatments for TNBC. Albumin is a promising biomimetic material that may be fabricated into nanoparticles to possibly exert passive effects on targeted tumors. Irinotecan has been extensively used in clinical settings, although a high dosage is required due to its low efficiency of conversion into the active metabolite SN-38, also known as 7-ethyl-10-hydroxy-camptothecin. The aim of this work was to optimize SN-38-loaded bovine serum albumin nanoparticles (sBSANPs) and evaluate their potency against TNBC. The sBSANPs were characterized by a small size of about 134-264 nm, a negative charge of -37 to -40 mV, an entrapment efficiency of 59-71%, and a particle yield of 65-86%. The cytotoxicity assays using sBSANPs showed a higher potency specifically against both MDA-MB-468 and MDA-MB-231 cells (ER-, PR-, HER2-) compared to MCF-7 (ER+, PR+, HER2-), and exhibited an extremely low IC50 at the nanomolar levels (2.01-6.82 nM). The release profiles indicated that SN-38 presented an initial burst release within 12 h, and sBSANPs had a slow release pattern. Flow cytometry results showed that the fluorescence intensity of sBSANPs was significantly higher than that of the control group. The confocal images also confirmed that sBSANPs were taken up by MDA-MB-468 cells. Moreover, we found that a larger BSANP size resulted in an increased hemolytic effect. In vivo animal studies demonstrated that loading of SN-38 into bovine serum albumin nanoparticles could minimize the initial concentration without extending the elimination half-life, but significantly minimized the Cmax (p < 0.001) as compared with irinotecan treatment.

18.
PLoS Biol ; 17(6): e3000286, 2019 06.
Article in English | MEDLINE | ID: mdl-31194726

ABSTRACT

During rheumatoid arthritis (RA) treatment, long-term injection of antitumor necrosis factor α antibodies (anti-TNFα Abs) may induce on-target toxicities, including severe infections (tuberculosis [TB] or septic arthritis) and malignancy. Here, we used an immunoglobulin G1 (IgG1) hinge as an Ab lock to cover the TNFα-binding site of Infliximab by linking it with matrix metalloproteinase (MMP) -2/9 substrate to generate pro-Infliximab that can be specifically activated in the RA region to enhance the selectivity and safety of treatment. The Ab lock significantly inhibits the TNFα binding and reduces the anti-idiotypic (anti-Id) Ab binding to pro-Infliximab by 395-fold, 108-fold compared with Infliximab, respectively, and MMP-2/9 can completely restore the TNFα neutralizing ability of pro-Infliximab to block TNFα downstream signaling. Pro-Infliximab was only selectively activated in the disease site (mouse paws) and presented similar pharmacokinetics (PKs) and bio-distribution to Infliximab. Furthermore, pro-Infliximab not only provided equivalent therapeutic efficacy to Infliximab but also maintained mouse immunity against Listeria infection in the RA mouse model, leading to a significantly higher survival rate (71%) than that of the Infliximab treatment group (0%). The high-selectivity pro-Infliximab maintains host immunity and keeps the original therapeutic efficiency, providing a novel strategy for RA therapy.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Drug Delivery Systems/methods , Infliximab/pharmacology , Animals , Arthritis, Rheumatoid/physiopathology , Humans , Immunoglobulin G/immunology , Immunoglobulin G/therapeutic use , Infliximab/metabolism , Mice , Mice, Inbred DBA , Mice, Knockout , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
19.
Sci Rep ; 8(1): 8821, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29891869

ABSTRACT

Coxsackievirus (CV)-B5 is a common human enterovirus reported worldwide; swine vesicular disease virus (SVDV) is a porcine variant of CV-B5. To clarify the transmission dynamics and molecular basis of host switching between CV-B5 and SVDV, we analysed and compared the VP1 and partial 3Dpol gene regions of these two viruses. Spatiotemporal dynamics of viral transmission were estimated using a Bayesian statistical inference framework. The detected selection events were used to analyse the key molecules associated with host switching. Analyses of VP1 sequences revealed six CV-B5 genotypes (A1-A4 and B1-B2) and three SVDV genotypes (I-III). Analyses of partial 3Dpol revealed five clusters (A-E). The genotypes evolved sequentially over different periods, albeit with some overlap. The major hub of CV-B5 transmission was in China whereas the major hubs of SVDV transmission were in Italy. Network analysis based on deduced amino acid sequences showed a diverse extension of the VP1 structural protein, whereas most sequences were clustered into two haplotypes in the partial 3Dpol region. Residue 178 of VP1 showed four epistatic interactions with residues known to play essential roles in viral host tropism, cell entry, and viral decoating.


Subject(s)
Coxsackievirus Infections/veterinary , Coxsackievirus Infections/virology , Enterovirus B, Human/classification , Enterovirus B, Human/genetics , Evolution, Molecular , Animals , Capsid Proteins/genetics , China/epidemiology , Cluster Analysis , Coxsackievirus Infections/epidemiology , DNA-Directed RNA Polymerases/genetics , Enterovirus B, Human/isolation & purification , Genetic Variation , Genotype , Humans , Italy/epidemiology , Phylogeny , Sequence Analysis, DNA , Spatio-Temporal Analysis , Swine , Swine Diseases/epidemiology , Swine Diseases/virology , Viral Proteins/genetics
20.
Int J Nanomedicine ; 13: 2789-2802, 2018.
Article in English | MEDLINE | ID: mdl-29785106

ABSTRACT

BACKGROUND: SN38 (7-ethyl-10-hydroxycamptothecin) is a camptothecin derivative acts against various tumors. However, SN38 is hydrolyzed in the physiological environment (pH 7.4), and this instability interferes with its potential therapeutic effect. Our objective was to investigate SN38-loaded liposomes to overcome the poor solubility of SN38 and its biodistribution, which further diminish its toxicity. MATERIALS AND METHODS: The sub-100 nm targeted liposomes was employed to deliver SN-38 and evaluate the characterization, release behaviors, cytotoxicity, in vivo pharmacokinetics and biochemical assay. RESULTS: The SN38-loaded targeted liposomes consisted of small (100.49 nm) spherical nanoparticles with negative charge (-37.93 mV) and high entrapment efficiency (92.47%). The release behavior of the SN38-loaded targeted liposomes was fitted with Higuchi kinetics (R2=0.9860). Free SN38 presented initial burst release. The IC50 for the SN38-loaded targeted liposomes (0.11 µM) was significantly lower than for the SN38 solution (0.37 µM) in the MCF7 cell line (P<0.01). Confocal laser scanning microscopy also confirmed highly efficient accumulation in the MCF7 cells. Pharmacokinetics demonstrated that the SN38-loaded targeted liposomes had a slightly increased half-life and mean residence time and decreased area under the concentration-time curve and maximum concentration. The results suggested that retention was achieved while the exposure of SN38 was significantly decreased. A noninvasive in vivo imaging system also showed that the targeted liposomes selectively targeted MCF7 tumors. In vivo toxicity data demonstrated that the decrease in platelets was significantly improved by SN38-loaded targeted liposomes, and diarrhea was not observed in BALB/c mice. CONCLUSION: In summary, SN38-loaded targeted liposomes could be a good candidate for application in human breast cancer.


Subject(s)
Camptothecin/analogs & derivatives , Liposomes/administration & dosage , Nanoparticles/administration & dosage , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacokinetics , Camptothecin/administration & dosage , Camptothecin/adverse effects , Camptothecin/pharmacokinetics , Drug Liberation , Humans , Irinotecan , Liposomes/chemistry , MCF-7 Cells , Male , Mice, Inbred BALB C , Molecular Imaging/methods , Nanoparticles/chemistry , Nanoparticles/toxicity , Particle Size , Solubility , Tissue Distribution , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...