Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Dairy Sci ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38788846

ABSTRACT

This study aimed to evaluate the impact of copy number variants (CNVs) on 13 reproduction and 12 disease traits in Holstein cattle. Intensity signal files containing Log R ratio and B allele frequency information from 13,730 Holstein animals genotyped with a 95K SNP panel, and 8,467 Holstein animals genotyped with a 50K SNP panel were used to identify the CNVs. Subsequently, the identified CNVs were validated using whole genome sequence data from 126 animals, resulting in 870 high-confidence CNV regions (CNVRs) on 12,131 animals. Out of these, 54 CNVRs had frequencies higher than or equal to 1% in the population and were used in the genome-wide association analysis (one CNVR at a time, including the G matrix). Results revealed that 4 CNVRs were significantly (p-value < 3.7 × 10-5) associated with at least one of the traits analyzed in this study. Specifically, 2 CNVRs were associated with 3 reproduction traits (i.e., calf survival, first service to conception, and non-return rate), and 2 CNVRs were associated with 2 disease traits (i.e., metritis and retained placenta). These CNVRs harbored genes implicated in immune response, cellular signaling, and neuronal development, supporting their potential involvement in these traits. Further investigations to unravel the mechanistic and functional implications of these CNVRs on the mentioned traits are warranted.

2.
J Anim Breed Genet ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38686591

ABSTRACT

The beef cattle industry has experienced a shift driven by a market demand for healthier meat, cost efficiency and environmental sustainability in recent years. Consequently, there has been a growing focus on the fatty acids content and functions of meat in cattle breeding programmes. Besides, a deeper understanding of the biological mechanisms influencing the expression of different phenotypes related to fatty acid profiles is crucial. In this study, we aimed to identify Single-Nucleotide Variants (SNV) and Insertion/Deletion (InDels) DNA variants in candidate genes related to fatty acid profiles described in genomic, transcriptomic and proteomic studies conducted in beef cattle breeds. Utilizing whole-genome re-sequencing data from Brazilian locally adapted bovine breeds, namely Caracu and Pantaneiro, we identified SNVs and InDels associated with 23,947 genes. From these, we identified 318 candidate genes related to fatty acid profiles that contain variants. Subsequently, we select only genes with SNVs and InDels in their promoter, 5' UTR and coding region. Through the gene-biological process network, approximately 19 genes were highlighted. Furthermore, considering the studied trait and a literature review, we selected the main transcription factors (TF). Functional analysis via gene-TF network allowed us to identify the 30 most likely candidate genes for meat fatty acid profile in cattle. LIPE, MFSD2A and SREBF1 genes were highlighted in networks due to their biological importance. Further dissection of these genes revealed 15 new variants found in promoter regions of Caracu and Pantaneiro sequences. The gene networks facilitated a better functional understanding of genes and TF, enabling the identification of variants potentially related to the expression of candidate genes for meat fatty acid profiles in cattle.

3.
J Dairy Sci ; 107(3): 1510-1522, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37690718

ABSTRACT

The Resilient Dairy Genome Project (RDGP) is an international large-scale applied research project that aims to generate genomic tools to breed more resilient dairy cows. In this context, improving feed efficiency and reducing greenhouse gases from dairy is a high priority. The inclusion of traits related to feed efficiency (e.g., dry matter intake [DMI]) or greenhouse gases (e.g., methane emissions [CH4]) relies on available genotypes as well as high quality phenotypes. Currently, 7 countries (i.e., Australia, Canada, Denmark, Germany, Spain, Switzerland, and United States) contribute with genotypes and phenotypes including DMI and CH4. However, combining data are challenging due to differences in recording protocols, measurement technology, genotyping, and animal management across sources. In this study, we provide an overview of how the RDGP partners address these issues to advance international collaboration to generate genomic tools for resilient dairy. Specifically, we describe the current state of the RDGP database, data collection protocols in each country, and the strategies used for managing the shared data. As of February 2022, the database contains 1,289,593 DMI records from 12,687 cows and 17,403 CH4 records from 3,093 cows and continues to grow as countries upload new data over the coming years. No strong genomic differentiation between the populations was identified in this study, which may be beneficial for eventual across-country genomic predictions. Moreover, our results reinforce the need to account for the heterogeneity in the DMI and CH4 phenotypes in genomic analysis.


Subject(s)
Greenhouse Gases , Female , Animals , Cattle , Genomics , Genotype , Australia , Methane
4.
Animals (Basel) ; 13(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37106871

ABSTRACT

Genetic selection can be a feasible method to help mitigate enteric methane emissions from dairy cattle, as methane emission-related traits are heritable and genetic gains are persistent and cumulative over time. The objective of this study was to estimate heritability of methane emission phenotypes and the genetic and phenotypic correlations between them in Holstein cattle. We used 1765 individual records of methane emission obtained from 330 Holstein cattle from two Canadian herds. Methane emissions were measured using the GreenFeed system, and three methane traits were analyzed: the amount of daily methane produced (g/d), methane yield (g methane/kg dry matter intake), and methane intensity (g methane/kg milk). Genetic parameters were estimated using univariate and bivariate repeatability animal models. Heritability estimates (±SE) of 0.16 (±0.10), 0.27 (±0.12), and 0.21 (±0.14) were obtained for daily methane production, methane yield, and methane intensity, respectively. A high genetic correlation (rg = 0.94 ± 0.23) between daily methane production and methane intensity indicates that selecting for daily methane production would result in lower methane per unit of milk produced. This study provides preliminary estimates of genetic parameters for methane emission traits, suggesting that there is potential to mitigate methane emission in Holstein cattle through genetic selection.

5.
PLoS One ; 18(4): e0284085, 2023.
Article in English | MEDLINE | ID: mdl-37036840

ABSTRACT

Studying structural variants that can control complex traits is relevant for dairy cattle production, especially for animals that are tolerant to breeding conditions in the tropics, such as the Dairy Gir cattle. This study identified and characterized high confidence copy number variation regions (CNVR) in the Gir breed genome. A total of 38 animals were whole-genome sequenced, and 566 individuals were genotyped with a high-density SNP panel, among which 36 animals had both sequencing and SNP genotyping data available. Two sets of high confidence CNVR were established: one based on common CNV identified in the studied population (CNVR_POP), and another with CNV identified in sires with both sequence and SNP genotyping data available (CNVR_ANI). We found 10 CNVR_POP and 45 CNVR_ANI, which covered 1.05 Mb and 4.4 Mb of the bovine genome, respectively. Merging these CNV sets for functional analysis resulted in 48 unique high confidence CNVR. The overlapping genes were previously related to embryonic mortality, environmental adaptation, evolutionary process, immune response, longevity, mammary gland, resistance to gastrointestinal parasites, and stimuli recognition, among others. Our results contribute to a better understanding of the Gir breed genome. Moreover, the CNV identified in this study can potentially affect genes related to complex traits, such as production, health, and reproduction.


Subject(s)
DNA Copy Number Variations , Genome , Cattle/genetics , Animals , DNA Copy Number Variations/genetics , Genotype , Multifactorial Inheritance , Biological Evolution , Polymorphism, Single Nucleotide
6.
J Dairy Sci ; 106(1): 323-351, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36333139

ABSTRACT

Mastitis, the most frequent disease in dairy cattle. Resistance to mastitis is a complex, polygenic trait controlled by several genes, each with small effects. Genome-wide association studies have been widely used to identify genomic variants associated with complex traits, including resistance to mastitis, to elucidate the underlying genetic architecture of the trait. However, no systematic review and gene prioritization analysis have been conducted to date on GWAS results for resistance to mastitis in dairy cattle. Hence, the objective was to perform a systematic review and gene prioritization analysis of GWAS studies to identify potential functional candidate genes associated with resistance to mastitis-related traits in dairy cattle. Four electronic databases were searched from inception to December 2020, supplemented with multiple sources of gray literature, to identify eligible articles. Annotation for genes and quantitative trait loci (QTL), and QTL enrichment analysis were conducted using GALLO. Gene prioritization analysis was performed by a guilty-by-association approach using GUILDify and ToppGene. From 52 articles included within this systematic review, 30 articles were used for further functional analyses. Gene and QTL annotation resulted in 9,125 and 43,646 unique genes and QTL, respectively, from 39 studies. In general, overlapping of genes across studies was very low (mean ± SD = 0.02% ± 0.07%). Most annotated genes were associated with somatic cell count-related traits and the Holstein breed. Within all annotated genes, 74 genes were shared among Holstein, Jersey, and Ayrshire breeds. Approximately 7.5% of annotated QTL were related to QTL class "health." Within the health QTL class, 2.6 and 2.2% of QTL were associated with clinical mastitis and somatic cell count-related traits. Enrichment analysis of QTL demonstrated that many enriched QTL were associated with somatic cell score located in Bos taurus autosomes 5, 6, 16, and 20. The prioritization analysis resulted in 427 significant genes after multiple test correction (false discovery rate of 5%) from 26 studies. Most prioritized genes were located in Bos taurus autosomes 19 and 7, and most top-ranked genes were from the cytokine superfamily (e.g., chemokines, interleukins, transforming growth factors, and tumor necrosis factor genes). Although most prioritized genes (397) were associated with somatic cell count-related traits, only 54 genes were associated with clinical mastitis-related traits. Twenty-four genes (ABCC9, ACHE, ADCYAP1, ARC, BCL2L1, CDKN1A, EPO, GABBR2, GDNF, GNRHR, IKBKE, JAG1, KCNJ8, KCNQ1, LIFR, MC3R, MYOZ3, NFKB1, OSMR, PPP3CA, PRLR, SHARPIN, SLC1A3, and TNFRSF25) were reported for both somatic cell count and clinical mastitis-related traits. Prioritized genes were mainly associated with immune response, regulation of secretion, locomotion, cell proliferation, and development. In conclusion, this study provided a fine-mapping of previously identified genomic regions associated with resistance to mastitis and identified key functional candidate genes for resistance to mastitis, which can be used to develop enhanced genomic strategies to combat mastitis by increasing mastitis resistance through genetic selection.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Female , Cattle/genetics , Animals , Genome-Wide Association Study/veterinary , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Mastitis, Bovine/genetics , Cattle Diseases/genetics
7.
Animals (Basel) ; 12(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36552505

ABSTRACT

Understanding how cows respond to heat stress has helped to provide effective herd management practices to tackle this environmental challenge. The possibility of selecting animals that are genetically more heat tolerant may provide additional means to maintain or even improve the productivity of the Canadian dairy industry, which is facing a shifting environment due to climate changes. The objective of this study was to estimate the genetic parameters for heat tolerance of milk, fat, and protein yields in Canadian Holstein cows. A total of 1.3 million test-day records from 195,448 first-parity cows were available. A repeatability test-day model fitting a reaction norm on the temperature-humidity index (THI) was used to estimate the genetic parameters. The estimated genetic correlations between additive genetic effect for production and for heat tolerance ranged from -0.13 to -0.21, indicating an antagonistic relationship between the level of production and heat tolerance. Heritability increased marginally as THI increased above its threshold for milk yield (0.20 to 0.23) and protein yield (0.14 to 0.16) and remained constant for fat yield (0.17). A Spearman rank correlation between the estimated breeding values under thermal comfort and under heat stress showed a potential genotype by environmental interaction. The existence of a genetic variability for heat tolerance allows for the selection of more heat tolerant cows.

8.
J Dairy Sci ; 105(10): 8257-8271, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36055837

ABSTRACT

Dry matter intake (DMI) is a fundamental component of the animal's feed efficiency, but measuring DMI of individual cows is expensive. Mid-infrared reflectance spectroscopy (MIRS) on milk samples could be an inexpensive alternative to predict DMI. The objectives of this study were (1) to assess if milk MIRS data could improve DMI predictions of Canadian Holstein cows using artificial neural networks (ANN); (2) to investigate the ability of different ANN architectures to predict unobserved DMI; and (3) to validate the robustness of developed prediction models. A total of 7,398 milk samples from 509 dairy cows distributed over Canada, Denmark, and the United States were analyzed. Data from Denmark and the United States were used to increase the training data size and variability to improve the generalization of the prediction models over the lactation. For each milk spectra record, the corresponding weekly average DMI (kg/d), test-day milk yield (MY, kg/d), fat yield (FY, g/d), and protein yield (PY, g/d), metabolic body weight (MBW), age at calving, year of calving, season of calving, days in milk, lactation number, country, and herd were available. The weekly average DMI was predicted with various ANN architectures using 7 predictor sets, which were created by different combinations MY, FY, PY, MBW, and MIRS data. All predictor sets also included age of calving and days in milk. In addition, the classification effects of season of calving, country, and lactation number were included in all models. The explored ANN architectures consisted of 3 training algorithms (Bayesian regularization, Levenberg-Marquardt, and scaled conjugate gradient), 2 types of activation functions (hyperbolic tangent and linear), and from 1 to 10 neurons in hidden layers). In addition, partial least squares regression was also applied to predict the DMI. Models were compared using cross-validation based on leaving out 10% of records (validation A) and leaving out 10% of cows (validation B). Superior fitting statistics of models comprising MIRS information compared with the models fitting milk, fat and protein yields suggest that other unknown milk components may help explain variation in weekly average DMI. For instance, using MY, FY, PY, and MBW as predictor variables produced a predictive accuracy (r) ranging from 0.510 to 0.652 across ANN models and validation sets. Using MIRS together with MY, FY, PY, and MBW as predictors resulted in improved fitting (r = 0.679-0.777). Including MIRS data improved the weekly average DMI prediction of Canadian Holstein cows, but it seems that MIRS predicts DMI mostly through its association with milk production traits and its utility to estimate a measure of feed efficiency that accounts for the level of production, such as residual feed intake, might be limited and needs further investigation. The better predictive ability of nonlinear ANN compared with linear ANN and partial least squares regression indicated possible nonlinear relationships between weekly average DMI and the predictor variables. In general, ANN using Bayesian regularization and scaled conjugate gradient training algorithms yielded slightly better weekly average DMI predictions compared with ANN using the Levenberg-Marquardt training algorithm.


Subject(s)
Lactation , Milk , Animals , Bayes Theorem , Body Weight , Canada , Cattle , Diet/veterinary , Female , Milk/chemistry , Neural Networks, Computer , Spectrophotometry, Infrared/veterinary
9.
J Dairy Sci ; 105(10): 8272-8285, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36055858

ABSTRACT

Interest in reducing eructed CH4 is growing, but measuring CH4 emissions is expensive and difficult in large populations. In this study, we investigated the effectiveness of milk mid-infrared spectroscopy (MIRS) data to predict CH4 emission in lactating Canadian Holstein cows. A total of 181 weekly average CH4 records from 158 Canadian cows and 217 records from 44 Danish cows were used. For each milk spectra record, the corresponding weekly average CH4 emission (g/d), test-day milk yield (MY, kg/d), fat yield (FY, g/d), and protein yield (PY, g/d) were available. The weekly average CH4 emission was predicted using various artificial neural networks (ANN), partial least squares regression, and different sets of predictors. The ANN architectures consisted of 3 training algorithms, 1 to 10 neurons with hyperbolic tangent activation function in the hidden layer, and 1 neuron with linear (purine) activation function in the hidden layer. Random cross-validation was used to compared the predictor sets: MY (set 1); FY (set 2); PY (set 3); MY and FY (set 4); MY and PY (set 5); MY, FY, and PY (set 6); MIRS (set 7); and MY, FY, PY, and MIRS (set 8). All predictor sets also included age at calving and days in milk, in addition to country, season of calving, and lactation number as categorical effects. Using only MY (set 1), the predictive accuracy (r) ranged from 0.245 to 0.457 and the root mean square error (RMSE) ranged from 87.28 to 99.39 across all prediction models and validation sets. Replacing MY with FY (set 2; r = 0.288-0.491; RMSE = 85.94-98.04) improved the predictive accuracy, but using PY (set 3; r = 0.260-0.468; RMSE = 86.95-98.47) did not. Adding FY to MY (set 4; r = 0.272-0.469; RMSE = 87.21-100.76) led to a negligible improvement compared with sets 1 and 3, but it slightly decreased accuracy compared with set 2. Adding PY to MY (set 5; r = 0.250-0.451; RMSE = 87.66-100.94) did not improve prediction ability. Combining MY, FY, and PY (set 6; r = 0.252-0.455; RMSE = 87.74-101.93) yielded accuracy slightly lower than sets 2 and 3. Using only MIRS data (set 7; r = 0.586-0.717; RMSE = 69.09-96.20) resulted in superior accuracy compared with all previous sets. Finally, the combination of MIRS data with MY, FY, and PY (set 8; r = 0.590-0.727; RMSE = 68.02-87.78) yielded similar accuracy to set 7. Overall, sets including the MIRS data yielded significantly better predictions than the other sets. To assess the predictive ability in a new unseen herd, a limited block cross-validation was performed using 20 cows in the same Canadian herd, which yielded r = 0.229 and RMSE = 154.44, which were clearly much worse than the average r = 0.704 and RMSE = 70.83 when predictions were made by random cross-validation. These results warrant further investigation when more data become available to allow for a more comprehensive block cross-validation before applying the calibrated models for large-scale prediction of CH4 emissions.


Subject(s)
Lactation , Milk , Animals , Canada , Cattle , Female , Lactation/metabolism , Methane/metabolism , Milk/chemistry , Neural Networks, Computer , Purines , Spectrophotometry, Infrared/veterinary
10.
J Dairy Sci ; 104(7): 8050-8061, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33896633

ABSTRACT

Genome-wide association studies based on SNP have been completed for multiple traits in dairy cattle; however, copy number variants (CNV) could add genomic information that has yet to be harnessed. The objectives of this study were to identify CNV in genotyped Holstein animals and assess their association with hoof health traits using deregressed estimated breeding values as pseudophenotypes. A total of 23,256 CNV comprising 1,645 genomic regions were identified in 5,845 animals. Fourteen genomic regions harboring structural variations, including 9 deletions and 5 duplications, were associated with at least 1 of the studied hoof health traits. This group of traits included digital dermatitis, interdigital dermatitis, heel horn erosion, sole ulcer, white line lesion, sole hemorrhage, and interdigital hyperplasia; no regions were associated with toe ulcer. Twenty candidate genes overlapped with the regions associated with these traits including SCART1, NRXN2, KIF26A, GPHN, and OR7A17. In this study, an effect on infectious hoof lesions could be attributed to the PRAME (Preferentially Expressed Antigen in Melanoma) gene. Almost all genes detected in association with noninfectious hoof lesions could be linked to known metabolic disorders. The knowledge obtained considering information of associated CNV to the traits of interest in this study could improve the accuracy of estimated breeding values. This may further increase the genetic gain for these traits in the Canadian Holstein population, thus reducing the involuntary animal losses due to lameness.


Subject(s)
Cattle Diseases , Foot Diseases , Hoof and Claw , Animals , Canada , Cattle/genetics , Cattle Diseases/genetics , DNA Copy Number Variations , Foot Diseases/genetics , Foot Diseases/veterinary , Genome-Wide Association Study/veterinary
11.
Animals (Basel) ; 11(4)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920730

ABSTRACT

The inclusion of feed efficiency in the breeding goal for dairy cattle has been discussed for many years. The effects of incorporating feed efficiency into a selection index were assessed by indirect selection (dry matter intake) and direct selection (residual feed intake) using deterministic modeling. Both traits were investigated in three ways: (1) restricting the trait genetic gain to zero, (2) applying negative selection pressure, and (3) applying positive selection pressure. Changes in response to selection from economic and genetic gain perspectives were used to evaluate the impact of including feed efficiency with direct or indirect selection in an index. Improving feed efficiency through direct selection on residual feed intake was the best scenario analyzed, with the highest overall economic response including favorable responses to selection for production and feed efficiency. Over time, the response to selection is cumulative, with the potential for animals to reduce consumption by 0.16 kg to 2.7 kg of dry matter per day while maintaining production. As the selection pressure increased on residual feed intake, the response to selection for production, health, and fertility traits and body condition score became increasingly less favorable. This work provides insight into the potential long-term effects of selecting for feed efficiency as residual feed intake.

12.
Sci Rep ; 10(1): 8044, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32415111

ABSTRACT

Multiple methods to detect copy number variants (CNV) relying on different types of data have been developed and CNV have been shown to have an impact on phenotypes of numerous traits of economic importance in cattle, such as reproduction and immunity. Further improvements in CNV detection are still needed in regard to the trade-off between high-true and low-false positive variant identification rates. Instead of improving single CNV detection methods, variants can be identified in silico with high confidence when multiple methods and datasets are combined. Here, CNV were identified from whole-genome sequences (WGS) and genotype array (GEN) data on 96 Holstein animals. After CNV detection, two sets of high confidence CNV regions (CNVR) were created that contained variants found in both WGS and GEN data following an animal-based (n = 52) and a population-based (n = 36) pipeline. Furthermore, the change in false positive CNV identification rates using different GEN marker densities was evaluated. The population-based approach characterized CNVR, which were more often shared among animals (average 40% more samples per CNVR) and were more often linked to putative functions (48 vs 56% of CNVR) than CNV identified with the animal-based approach. Moreover, false positive identification rates up to 22% were estimated on GEN information. Further research using larger datasets should use a population-wide approach to identify high confidence CNVR.


Subject(s)
DNA Copy Number Variations , Genome , Genotype , Whole Genome Sequencing , Animals , Breeding , Cattle , Chromosome Mapping , Computational Biology/methods , Genetic Markers , Genomics/methods
13.
J Dairy Sci ; 100(12): 9623-9634, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28987572

ABSTRACT

The objective of this study was to investigate different strategies for genotype imputation in a population of crossbred Girolando (Gyr × Holstein) dairy cattle. The data set consisted of 478 Girolando, 583 Gyr, and 1,198 Holstein sires genotyped at high density with the Illumina BovineHD (Illumina, San Diego, CA) panel, which includes ∼777K markers. The accuracy of imputation from low (20K) and medium densities (50K and 70K) to the HD panel density and from low to 50K density were investigated. Seven scenarios using different reference populations (RPop) considering Girolando, Gyr, and Holstein breeds separately or combinations of animals of these breeds were tested for imputing genotypes of 166 randomly chosen Girolando animals. The population genotype imputation were performed using FImpute. Imputation accuracy was measured as the correlation between observed and imputed genotypes (CORR) and also as the proportion of genotypes that were imputed correctly (CR). This is the first paper on imputation accuracy in a Girolando population. The sample-specific imputation accuracies ranged from 0.38 to 0.97 (CORR) and from 0.49 to 0.96 (CR) imputing from low and medium densities to HD, and 0.41 to 0.95 (CORR) and from 0.50 to 0.94 (CR) for imputation from 20K to 50K. The CORRanim exceeded 0.96 (for 50K and 70K panels) when only Girolando animals were included in RPop (S1). We found smaller CORRanim when Gyr (S2) was used instead of Holstein (S3) as RPop. The same behavior was observed between S4 (Gyr + Girolando) and S5 (Holstein + Girolando) because the target animals were more related to the Holstein population than to the Gyr population. The highest imputation accuracies were observed for scenarios including Girolando animals in the reference population, whereas using only Gyr animals resulted in low imputation accuracies, suggesting that the haplotypes segregating in the Girolando population had a greater effect on accuracy than the purebred haplotypes. All chromosomes had similar imputation accuracies (CORRsnp) within each scenario. Crossbred animals (Girolando) must be included in the reference population to provide the best imputation accuracies.


Subject(s)
Cattle/genetics , Genotype , Polymorphism, Single Nucleotide , Animals , Breeding , Female , Haplotypes
14.
BMC Genet ; 16: 99, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26250698

ABSTRACT

BACKGROUND: Genotype imputation has been used to increase genomic information, allow more animals in genome-wide analyses, and reduce genotyping costs. In Brazilian beef cattle production, many animals are resulting from crossbreeding and such an event may alter linkage disequilibrium patterns. Thus, the challenge is to obtain accurately imputed genotypes in crossbred animals. The objective of this study was to evaluate the best fitting and most accurate imputation strategy on the MA genetic group (the progeny of a Charolais sire mated with crossbred Canchim X Zebu cows) and Canchim cattle. The data set contained 400 animals (born between 1999 and 2005) genotyped with the Illumina BovineHD panel. Imputation accuracy of genotypes from the Illumina-Bovine3K (3K), Illumina-BovineLD (6K), GeneSeek-Genomic-Profiler (GGP) BeefLD (GGP9K), GGP-IndicusLD (GGP20Ki), Illumina-BovineSNP50 (50K), GGP-IndicusHD (GGP75Ki), and GGP-BeefHD (GGP80K) to Illumina-BovineHD (HD) SNP panels were investigated. Seven scenarios for reference and target populations were tested; the animals were grouped according with birth year (S1), genetic groups (S2 and S3), genetic groups and birth year (S4 and S5), gender (S6), and gender and birth year (S7). Analyses were performed using FImpute and BEAGLE software and computation run-time was recorded. Genotype imputation accuracy was measured by concordance rate (CR) and allelic R square (R(2)). RESULTS: The highest imputation accuracy scenario consisted of a reference population with males and females and a target population with young females. Among the SNP panels in the tested scenarios, from the 50K, GGP75Ki and GGP80K were the most adequate to impute to HD in Canchim cattle. FImpute reduced computation run-time to impute genotypes from 20 to 100 times when compared to BEAGLE. CONCLUSION: The genotyping panels possessing at least 50 thousands markers are suitable for genotype imputation to HD with acceptable accuracy. The FImpute algorithm demonstrated a higher efficiency of imputed markers, especially in lower density panels. These considerations may assist to increase genotypic information, reduce genotyping costs, and aid in genomic selection evaluations in crossbred animals.


Subject(s)
Genome-Wide Association Study , Genotype , Red Meat , Alleles , Animals , Brazil , Breeding , Cattle , Crosses, Genetic , Female , Linkage Disequilibrium , Male , Phenotype , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...