Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Hepatol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734383

ABSTRACT

BACKGROUND & AIMS: Bulevirtide (BLV), a first-in-class entry inhibitor, is approved in Europe for the treatment of chronic hepatitis delta (CHD). BLV monotherapy was superior to delayed treatment at week (W) 48, the primary efficacy endpoint, in the MYR301 study (NCT03852719). Here, we assessed if continued BLV therapy until W96 would improve virologic and biochemical response rates, particularly among patients who did not achieve virologic response at W24. METHODS: In this ongoing, open-label, randomized phase 3 study, patients with CHD (N = 150) were randomized (1:1:1) to treatment with BLV 2 (n = 49) or 10 mg/day (n = 50), each for 144 weeks, or to delayed treatment for 48 weeks followed by BLV 10 mg/day for 96 weeks (n = 51). Combined response was defined as undetectable hepatitis delta virus (HDV) RNA or a decrease in HDV RNA by ≥2 log10 IU/mL from baseline and alanine aminotransferase (ALT) normalization. Other endpoints included virologic response, ALT normalization, and change in HDV RNA. RESULTS: Of 150 patients, 143 (95%) completed 96 weeks of the study. Efficacy responses were maintained and/or improved between W48 and W96, with similar combined, virologic, and biochemical response rates between BLV 2 and 10 mg. Of the patients with a suboptimal early virologic response at W24, 43% of non-responders and 82% of partial responders achieved virologic response at W96. Biochemical improvement often occurred independent of virologic response. Adverse events (AEs) were mostly mild, with no serious AEs related to BLV. CONCLUSIONS: Virologic and biochemical responses were maintained and/or increased with longer-term BLV therapy, including in those with suboptimal early virologic response. BLV monotherapy for CHD was safe and well tolerated through W96. IMPACT AND IMPLICATIONS: In July 2023, bulevirtide was fully approved for the treatment of chronic hepatitis delta (CHD) in Europe based on clinical study results from up to 48 weeks of treatment. Understanding the efficacy and safety of bulevirtide over the longer term is important for healthcare providers. In this analysis, we demonstrate that bulevirtide monotherapy for 96 weeks in patients with CHD was associated with continued improvements in combined, virologic, and biochemical responses as well as liver stiffness from week 48 at both the 2-mg and 10-mg doses. Patients with suboptimal virologic responses to bulevirtide at week 24 also benefited from continued therapy, with the majority achieving virologic response or biochemical improvement by week 96. GOV IDENTIFIER: NCT03852719.

2.
Viruses ; 16(4)2024 04 13.
Article in English | MEDLINE | ID: mdl-38675942

ABSTRACT

The epitranscriptomic modification m6A is a prevalent RNA modification that plays a crucial role in the regulation of various aspects of RNA metabolism. It has been found to be involved in a wide range of physiological processes and disease states. Of particular interest is the role of m6A machinery and modifications in viral infections, serving as an evolutionary marker for distinguishing between self and non-self entities. In this review article, we present a comprehensive overview of the epitranscriptomic modification m6A and its implications for the interplay between viruses and their host, focusing on immune responses and viral replication. We outline future research directions that highlight the role of m6A in viral nucleic acid recognition, initiation of antiviral immune responses, and modulation of antiviral signaling pathways. Additionally, we discuss the potential of m6A as a prognostic biomarker and a target for therapeutic interventions in viral infections.


Subject(s)
Immunity, Innate , Virus Diseases , Humans , Virus Diseases/immunology , Virus Diseases/virology , Methylation , Virus Replication , Viruses/immunology , Viruses/genetics , Animals , RNA, Viral/genetics , RNA, Viral/immunology , Signal Transduction , Host-Pathogen Interactions/immunology
3.
Med Res Rev ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549260

ABSTRACT

Over the past decade, in vivo gene replacement therapy has significantly advanced, resulting in market approval of numerous therapeutics predominantly relying on adeno-associated viral vectors (AAV). While viral vectors have undeniably addressed several critical healthcare challenges, their clinical application has unveiled a range of limitations and safety concerns. This review highlights the emerging challenges in the field of gene therapy. At first, we discuss both the role of biological barriers in viral gene therapy with a focus on AAVs, and review current landscape of in vivo human gene therapy. We delineate advantages and disadvantages of AAVs as gene delivery vehicles, mostly from the safety perspective (hepatotoxicity, cardiotoxicity, neurotoxicity, inflammatory responses etc.), and outline the mechanisms of adverse events in response to AAV. Contribution of every aspect of AAV vectors (genomic structure, capsid proteins) and host responses to injected AAV is considered and substantiated by basic, translational and clinical studies. The updated evaluation of recent AAV clinical trials and current medical experience clearly shows the risks of AAVs that sometimes overshadow the hopes for curing a hereditary disease. At last, a set of established and new molecular and nanotechnology tools and approaches are provided as potential solutions for mitigating or eliminating side effects. The increasing number of severe adverse reactions and, sadly deaths, demands decisive actions to resolve the issue of immune responses and extremely high doses of viral vectors used for gene therapy. In response to these challenges, various strategies are under development, including approaches aimed at augmenting characteristics of viral vectors and others focused on creating secure and efficacious non-viral vectors. This comprehensive review offers an overarching perspective on the present state of gene therapy utilizing both viral and non-viral vectors.

4.
Lancet Gastroenterol Hepatol ; 9(4): 346-365, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367629

ABSTRACT

The top 20 highest burdened countries (in disability-adjusted life years) account for more than 75% of the global burden of viral hepatitis. An effective response in these 20 countries is crucial if global elimination targets are to be achieved. In this update of the Lancet Gastroenterology & Hepatology Commission on accelerating the elimination of viral hepatitis, we convene national experts from each of the top 20 highest burdened countries to provide an update on progress. Although the global burden of diseases is falling, progress towards elimination varies greatly by country. By use of a hepatitis elimination policy index conceived as part of the 2019 Commission, we measure countries' progress towards elimination. Progress in elimination policy has been made in 14 of 20 countries with the highest burden since 2018, with the most substantial gains observed in Bangladesh, India, Indonesia, Japan, and Russia. Most improvements are attributable to the publication of formalised national action plans for the elimination of viral hepatitis, provision of publicly funded screening programmes, and government subsidisation of antiviral treatments. Key themes that emerged from discussion between national commissioners from the highest burdened countries build on the original recommendations to accelerate the global elimination of viral hepatitis. These themes include the need for simplified models of care, improved access to appropriate diagnostics, financing initiatives, and rapid implementation of lessons from the COVID-19 pandemic.


Subject(s)
Gastroenterology , Hepatitis A , Hepatitis , Humans , Pandemics , Hepatitis/epidemiology , Hepatitis A/epidemiology , Hepatitis A/prevention & control , India
5.
N Engl J Med ; 389(1): 22-32, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37345876

ABSTRACT

BACKGROUND: Coinfection with hepatitis D virus (HDV) accelerates the progression of liver disease associated with chronic hepatitis B. Bulevirtide inhibits the entry of HDV into hepatocytes. METHODS: In this ongoing phase 3 trial, patients with chronic hepatitis D, with or without compensated cirrhosis, were randomly assigned, in a 1:1:1 ratio, to receive bulevirtide subcutaneously at 2 mg per day (2-mg group) or 10 mg per day (10-mg group) for 144 weeks or to receive no treatment for 48 weeks followed by bulevirtide subcutaneously at 10 mg per day for 96 weeks (control group). Patients will complete 96 weeks of additional follow-up after the end of treatment. The primary end point was a combined response at week 48 of an undetectable HDV RNA level, or a level that decreased by at least 2 log10 IU per milliliter from baseline, and normalization of the alanine aminotransferase (ALT) level. The key secondary end point was an undetectable HDV RNA level at week 48, in a comparison between the 2-mg group and the 10-mg group. RESULTS: A total of 49 patients were assigned to the 2-mg group, 50 to the 10-mg group, and 51 to the control group. A primary end-point response occurred in 45% of patients in the 2-mg group, 48% in the 10-mg group, and 2% in the control group (P<0.001 for the comparison of each dose group with the control group). The HDV RNA level at week 48 was undetectable in 12% of patients in the 2-mg group and in 20% in the 10-mg group (P = 0.41). The ALT level normalized in 12% of patients in the control group, 51% in the 2-mg group (difference from control, 39 percentage points [95% confidence interval {CI}, 20 to 56]), and 56% in the 10-mg group (difference from control, 44 percentage points [95% CI, 26 to 60]). Loss of hepatitis B virus surface antigen (HBsAg) or an HBsAg level that decreased by at least 1 log10 IU per milliliter did not occur in the bulevirtide groups by week 48. Headache, pruritus, fatigue, eosinophilia, injection-site reactions, upper abdominal pain, arthralgia, and asthenia were more common in the 2-mg and 10-mg groups combined than in the control group. No treatment-related serious adverse events occurred. Dose-dependent increases in bile acid levels were noted in the 2-mg and 10-mg groups. CONCLUSIONS: After 48 weeks of bulevirtide treatment, HDV RNA and ALT levels were reduced in patients with chronic hepatitis D. (Funded by Gilead Sciences; MYR 301 ClinicalTrials.gov number, NCT03852719.).


Subject(s)
Antiviral Agents , Hepatitis B, Chronic , Hepatitis D, Chronic , Humans , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Hepatitis B Surface Antigens , Hepatitis B virus/genetics , Hepatitis B, Chronic/drug therapy , Hepatitis D, Chronic/drug therapy , Hepatitis Delta Virus/genetics , RNA , Coinfection/drug therapy , Coinfection/virology
6.
Mol Ther Nucleic Acids ; 32: 478-493, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37187708

ABSTRACT

APOBEC/AID cytidine deaminases play an important role in innate immunity and antiviral defenses and were shown to suppress hepatitis B virus (HBV) replication by deaminating and destroying the major form of HBV genome, covalently closed circular DNA (cccDNA), without toxicity to the infected cells. However, developing anti-HBV therapeutics based on APOBEC/AID is complicated by the lack of tools for activating and controlling their expression. Here, we developed a CRISPR-activation-based approach (CRISPRa) to induce APOBEC/AID transient overexpression (>4-800,000-fold increase in mRNA levels). Using this new strategy, we were able to control APOBEC/AID expression and monitor their effects on HBV replication, mutation, and cellular toxicity. CRISPRa prominently reduced HBV replication (∼90%-99% decline of viral intermediates), deaminated and destroyed cccDNA, but induced mutagenesis in cancer-related genes. By coupling CRISPRa with attenuated sgRNA technology, we demonstrate that APOBEC/AID activation can be precisely controlled, eliminating off-site mutagenesis in virus-containing cells while preserving prominent antiviral activity. This study untangles the differences in the effects of physiologically expressed APOBEC/AID on HBV replication and cellular genome, provides insights into the molecular mechanisms of HBV cccDNA mutagenesis, repair, and degradation, and, finally, presents a strategy for a tunable control of APOBEC/AID expression and for suppressing HBV replication without toxicity.

7.
Mol Ther Nucleic Acids ; 31: 482-493, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36865089

ABSTRACT

CRISPR-Cas9 systems can directly target the hepatitis B virus (HBV) major genomic form, covalently closed circular DNA (cccDNA), for decay and demonstrate remarkable anti-HBV activity. Here, we demonstrate that CRISPR-Cas9-mediated inactivation of HBV cccDNA, frequently regarded as the "holy grail" of viral persistence, is not sufficient for curing infection. Instead, HBV replication rapidly rebounds because of de novo formation of HBV cccDNA from its precursor, HBV relaxed circular DNA (rcDNA). However, depleting HBV rcDNA before CRISPR-Cas9 ribonucleoprotein (RNP) delivery prevents viral rebound and promotes resolution of HBV infection. These findings provide the groundwork for developing approaches for a virological cure of HBV infection by a single dose of short-lived CRISPR-Cas9 RNPs. Blocking cccDNA replenishment and re-establishment from rcDNA conversion is critical for completely clearing the virus from infected cells by site-specific nucleases. The latter can be achieved by widely used reverse transcriptase inhibitors.

8.
Biotechnol Adv ; 64: 108122, 2023.
Article in English | MEDLINE | ID: mdl-36813011

ABSTRACT

Extracellular vesicles (EVs) are cell-derived biological nanoparticles that gained great interest for drug delivery. EVs have numerous advantages compared to synthetic nanoparticles, such as ideal biocompatibility, safety, ability to cross biological barriers and surface modification via genetic or chemical methods. On the other hand, the translation and the study of these carriers resulted difficult, mostly because of significant issues in up-scaling, synthesis and impractical methods of quality control. However, current manufacturing advances enable EV packaging with any therapeutic cargo, including DNA, RNA (for RNA vaccines and RNA therapeutics), proteins, peptides, RNA-protein complexes (including gene-editing complexes) and small molecules drugs. To date, an array of new and upgraded technologies have been introduced, substantially improving EV production, isolation, characterization and standardization. The used-to-be "gold standards" of EV manufacturing are now outdated, and the state-of-art requires extensive revision. This review re-evaluates the pipeline for EV industrial production and provides a critical overview of the modern technologies required for their synthesis and characterization.


Subject(s)
Extracellular Vesicles , Nanoparticles , Extracellular Vesicles/metabolism , Drug Delivery Systems , RNA , Pharmaceutical Preparations/metabolism
9.
Pharmaceutics ; 15(2)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36839856

ABSTRACT

Because of their high biocompatibility, biological barrier negotiation, and functionalization properties, biological nanoparticles have been actively investigated for many medical applications. Biological nanoparticles, including natural extracellular vesicles (EVs) and synthetic extracellular vesicle-mimetic nanovesicles (EMNVs), represent novel drug delivery vehicles that can accommodate different payloads. In this study, we investigated the physical, biological, and delivery properties of EVs and EMNVs and analyzed their ability to deliver the chemotherapeutic drug doxorubicin. EMNVs and EVs exhibit similar properties, but EMNVs are more effectively internalized, while EVs show higher intracellular doxorubicin release activity. In addition, these nanotherapeutics were investigated in combination with the FDA-approved drug hydroxychloroquine (HCQ). We demonstrate that HCQ-induced lysosome destabilization and could significantly increase nanoparticle internalization, doxorubicin release, and cytotoxicity. Altogether, these data demonstrate that, from the delivery standpoint in vitro, the internalization of EMNVs and EVs and their payload release were slightly different and both nanotherapeutics had comparable cytotoxic performance. However, the synthesis of EMNVs was significantly faster and cost-effective. In addition, we highlight the benefits of combining biological nanoparticles with the lysosome-destabilizing agent HCQ that increased both the internalization and the cytotoxic properties of the particles.

10.
Lancet Infect Dis ; 23(1): 117-129, 2023 01.
Article in English | MEDLINE | ID: mdl-36113537

ABSTRACT

BACKGROUND: Bulevirtide is a first-in-class peptidic entry inhibitor for hepatitis B virus (HBV) and hepatitis D virus infection. In July, 2020, bulevirtide 2 mg received conditional marketing authorisation by the European Medical Agency for treatment of chronic hepatitis D virus infection. We investigated the antiviral activity of bulevirtide in patients chronically infected with HBV and hepatitis D virus. METHODS: MYR202 (ClinicalTrials.gov, NCT03546621; EudraCT, 2016-000395-13) was a multicentre, parallel-group, randomised, open-label, phase 2 trial. Adults (aged 18-65 years) with chronic hepatitis D virus infection, including patients with cirrhosis and patients who had contraindications to PegIFNα treatment or for whom treatment did not work, were eligible and were enrolled from four hospitals in Germany and 12 hospitals in Russia. Patients were randomly assigned (1:1:1:1) to receive 2 mg (n=28), 5 mg (n=32), or 10 mg (n=30) subcutaneous bulevirtide once per day with tenofovir disoproxil fumarate (TDF; 245 mg once per day orally) or TDF alone (245 mg once per day orally; n=30) for 24 weeks. Randomisation was done using a digital block scheme with stratification, consisting of 480 randomisation numbers separated into 30 blocks. The primary endpoint was undetectable hepatitis D virus RNA or 2 log10 IU/mL or higher decline in hepatitis D virus RNA at week 24, which was analysed in the modified intention-to-treat population, including patients who received study medication at least once after randomisation. Hepatitis D virus RNA concentrations were monitored until week 48. Safety was assessed for all patients who received at least one dose of bulevirtide or TDF. FINDINGS: Between Feb 16, 2016, and Dec 8, 2016, 171 patients with chronic hepatitis D virus infection were screened; 51 were ineligible based on the exclusion criteria and 120 patients (59 with cirrhosis) were enrolled. At week 24, 15 (54%, 95% CI 34-73) of 28 patients achieved undetectable hepatitis D virus RNA or a 2 log10 IU/mL or more decline in hepatitis D virus RNA (p<0·0001 vs TDF alone) with 2 mg bulevirtide, 16 (50%, 32-68) of 32 with 5 mg bulevirtide (p<0·0001), and 23 (77%, 58-90) of 30 with 10 mg bulevirtide (p<0·0001), versus one (4%, 0·1-18) of 28 with TDF alone. By week 48 (24 weeks after bulevirtide cessation), hepatitis D virus RNA concentrations had rebounded, with median changes from week 24 to week 48 of 1·923 log10 IU/mL (IQR 0·566-2·485) with 2 mg bulevirtide, 1·732 log10 (0·469-2·568) with 5 mg bulevirtide, and 2·030 log10 (1·262-2·903) with 10 mg bulevirtide. There were no deaths associated with treatment. Three (9%) patients in the bulevirtide 5 mg group, two (7%) patients in the bulevirtide 10 mg group, and one (4%) patient in the TDF group had serious adverse events. Common treatment-emergent adverse events included asymptomatic bile salt increases and increases in alanine aminotransferase and aspartate aminotransferase. INTERPRETATION: Bulevirtide induced a significant decline in hepatitis D virus RNA over 24 weeks. After cessation of bulevirtide, hepatitis D virus RNA concentrations rebounded. Longer treatment durations and combination therapies should be investigated. FUNDING: Hepatera LLC, MYR GmbH, and the German Centre for Infection Research, TTU Hepatitis.


Subject(s)
Coinfection , Hepatitis B, Chronic , Hepatitis D, Chronic , Hepatitis D , Adult , Humans , Tenofovir , Hepatitis B virus , Hepatitis Delta Virus/genetics , Hepatitis D, Chronic/drug therapy , Coinfection/drug therapy , Adenine/adverse effects , Antiviral Agents/adverse effects , Hepatitis D/drug therapy , RNA , Hepatitis B, Chronic/drug therapy , Treatment Outcome
11.
Pathogens ; 11(12)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36558817

ABSTRACT

The hepatitis C virus (HCV) causes both acute and chronic infection of the liver that can lead to liver cirrhosis, cancer, and liver failure. HCV is characterized by high genetic diversity and substantial variations in the prevalence of specific HCV genotypes throughout the world. Many effective regimens of direct-acting antivirals (DAAs), including pan-genotypic, can successfully treat HCV infection. Additionally, genotype-specific treatments for HCV are being actively employed in national plans for eliminating HCV infection around the world. The evaluation of HCV genotype prevalence in a given country is necessary for the successful implementation of the HCV elimination plans and for allocating financial resources to the DAAs which are the most effective against those specific HCV genotypes prevalent in a given country. Here, we analyzed HCV genotypes, subgenotypes, and recombinants in 10,107 serum samples collected in 2015-2017 from patients with chronic HCV infection living in all federal districts of Russia. This is the first and largest evaluation of HCV genotypes performed on samples from all territories of Russia, from its Central federal district to the Far East. Moreover, we have updated retrospective epidemiological analysis of chronic and acute HCV infection in Russia from 2001 to 2021. We demonstrate that the incidence of acute HCV (AHC) infection in Russia decreased from 16.7 cases per 100,000 people in 2001 to 0.6/100,000 in 2021. The number of cases of chronic HCV (CHC) infection also decreased from 29.5 to 16.4 per 100,000 people during this period. The HCV genotype analysis indicated that HCV genotype 1 dominates in Russia (53.6%), while genotypes 3 and 2 were detected in 35.4% and 7.8% of patients, respectively. These proportions are virtually identical in all regions of Russia except for the Far East, where HCV genotype 2 was detected in only 1% of the samples. HCV genotypes 1 and 2 are more widespread in women, and HCV genotype 3 in men. Genotype 3 was the most prevalent in 31-40-year-olds (44.9%), and genotype 1 was most prevalent in those over 70 years of age (72.2%). HCV genotype 2 was predominant among HCV-infected persons older than 40 years. Discriminating between HCV genotype 2 and recombinant RF1_2k/1b, which are frequently misclassified, is important for successful antiviral treatment. For the first time, we demonstrate, here, countrywide prevalence of HCV RF1_2k/1b in different regions of Russia. HCV RF1_2k/1b makes up 3.2% of HCV genotypes, reaching 30% among samples classified as genotype 2 by some commercial genotyping tests. The highest proportion of HCV RF1_2k/1b was detected in the North-West (60%), Southern (41.6%), and Central (31.6%) federal districts; its frequency in the Far Eastern and North Caucasus districts was ~14.3%. HCV RF1_2k/1b, and it was not detected in the Volga, Ural, or Siberian districts. To conclude, this is the first and most complete evaluation of HCV epidemiology and genotype/subgenotype distribution in Russia.

12.
Viruses ; 14(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36366563

ABSTRACT

A total of 381 hepatitis B virus (HBV) DNA sequences collected from nine groups of Siberian native populations were phylogenetically analyzed along with 179 HBV strains sampled in different urban populations of former western USSR republics and 50 strains from Central Asian republics and Mongolia. Different HBV subgenotypes predominated in various native Siberian populations. Subgenotype D1 was dominant in Altaian Kazakhs (100%), Tuvans (100%), and Teleuts (100%) of southern Siberia as well as in Dolgans and Nganasans (69%), who inhabit the polar Taimyr Peninsula. D2 was the most prevalent subgenotype in the combined group of Nenets, Komi, and Khants of the northern Yamalo-Nenets Autonomous Region (71%) and in Yakuts (36%) from northeastern Siberia. D3 was the main subgenotype in South Altaians (76%) and Buryats (40%) of southeastern Siberia, and in Chukchi (51%) of the Russian Far East. Subgenotype C2 was found in Taimyr (19%) and Chukchi (27%), while subgenotype A2 was common in Yakuts (33%). In contrast, D2 was dominant (56%) in urban populations of the former western USSR, and D1 (62%) in Central Asian republics and Mongolia. Statistical analysis demonstrated that the studied groups are epidemiologically isolated from each other and might have contracted HBV from different sources during the settlement of Siberia.


Subject(s)
Hepatitis B virus , Hepatitis B , Humans , Hepatitis B virus/genetics , Genotype , Phylogeny , Asian People , Genetic Variation , Hepatitis B/epidemiology
13.
World J Gastroenterol ; 28(33): 4812-4822, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36156926

ABSTRACT

BACKGROUND: The etiology of pancreatic cancer remains unclear. This limits the possibility of prevention and effective treatment. Hepatitis B virus (HBV) is responsible for the development of different types of cancer, but its role in pancreatic cancer is still being discussed. AIM: To assess the prevalence of previous HBV infection and to identify viral biomarkers in patients with pancreatic ductal adenocarcinoma (PDAC) to support the role of the virus in etiology of this cancer. METHODS: The data of 130 hepatitis B surface antigen-negative subjects were available for the final analysis, including 60 patients with PDAC confirmed by cytology or histology and 70 sex- and age-matched controls. All the participants were tested for HBV biomarkers in blood [antibody to hepatitis B core antigen (anti-HBc), antibody to hepatitis B surface antigen (anti-HBs) and HBV DNA], and for those with PDAC, biomarkers in resected pancreatic tissues were tested (HBV DNA, HBV pregenomic RNA and covalently closed circular DNA). We performed immunohistochemistry staining of pancreatic tissues for hepatitis B virus X antigen and Ki-67 protein. Non-parametric statistics were used for the analysis. RESULTS: Anti-HBc was detected in 18/60 (30%) patients with PDAC and in 9/70 (13%) participants in the control group (P = 0.029). Accordingly, the odds of PDAC in anti-HBc-positive subjects were higher compared to those with no previous HBV infection (odds ratio: 2.905, 95% confidence interval: 1.191-7.084, standard error 0.455). HBV DNA was detected in 8 cases of PDAC and in 6 of them in the pancreatic tumor tissue samples only (all patients were anti-HBc positive). Blood HBV DNA was negative in all subjects of the control group with positive results of the serum anti-HBc test. Among 9 patients with PDAC, 5 revealed signs of replicative competence of the virus (covalently closed circular DNA with or without pregenomic RNA) in the pancreatic tumor tissue samples. Hepatitis B virus X antigen expression and active cell proliferation was revealed by immunohistochemistry in 4 patients with PDAC in the pancreatic tumor tissue samples. CONCLUSION: We found significantly higher risks of PDAC in anti-HBc-positive patients. Detection of viral replication and hepatitis B virus X protein expression in the tumor tissue prove involvement of HBV infection in pancreatic cancer development.


Subject(s)
Carcinoma, Pancreatic Ductal , Hepatitis B , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/epidemiology , DNA, Circular , DNA, Viral , Hepatitis B/complications , Hepatitis B/diagnosis , Hepatitis B/epidemiology , Hepatitis B Antibodies , Hepatitis B Core Antigens , Hepatitis B Surface Antigens , Hepatitis B virus/genetics , Humans , Ki-67 Antigen/genetics , Pancreatic Neoplasms/epidemiology , RNA , Pancreatic Neoplasms
14.
JHEP Rep ; 4(5): 100462, 2022 May.
Article in English | MEDLINE | ID: mdl-35434589

ABSTRACT

Background & Aims: Direct-acting antiviral (DAA) regimens provide a cure in >95% of patients with chronic HCV infection. However, in some patients in whom therapy fails, resistance-associated substitutions (RASs) can develop, limiting retreatment options and risking onward resistant virus transmission. In this study, we evaluated RAS prevalence and distribution, including novel NS5A RASs and clinical factors associated with RAS selection, among patients who experienced DAA treatment failure. Methods: SHARED is an international consortium of clinicians and scientists studying HCV drug resistance. HCV sequence linked metadata from 3,355 patients were collected from 22 countries. NS3, NS5A, and NS5B RASs in virologic failures, including novel NS5A substitutions, were examined. Associations of clinical and demographic characteristics with RAS selection were investigated. Results: The frequency of RASs increased from its natural prevalence following DAA exposure: 37% to 60% in NS3, 29% to 80% in NS5A, 15% to 22% in NS5B for sofosbuvir, and 24% to 37% in NS5B for dasabuvir. Among 730 virologic failures, most were treated with first-generation DAAs, 94% had drug resistance in ≥1 DAA class: 31% single-class resistance, 42% dual-class resistance (predominantly against protease and NS5A inhibitors), and 21% triple-class resistance. Distinct patterns containing ≥2 highly resistant RASs were common. New potential NS5A RASs and adaptive changes were identified in genotypes 1a, 3, and 4. Following DAA failure, RAS selection was more frequent in older people with cirrhosis and those infected with genotypes 1b and 4. Conclusions: Drug resistance in HCV is frequent after DAA treatment failure. Previously unrecognized substitutions continue to emerge and remain uncharacterized. Lay summary: Although direct-acting antiviral medications effectively cure hepatitis C in most patients, sometimes treatment selects for resistant viruses, causing antiviral drugs to be either ineffective or only partially effective. Multidrug resistance is common in patients for whom DAA treatment fails. Older patients and patients with advanced liver diseases are more likely to select drug-resistant viruses. Collective efforts from international communities and governments are needed to develop an optimal approach to managing drug resistance and preventing the transmission of resistant viruses.

15.
Semin Cancer Biol ; 86(Pt 2): 555-567, 2022 11.
Article in English | MEDLINE | ID: mdl-35472397

ABSTRACT

With the ultimate goal of increasing tumor accumulation of therapeutics, various nanocarriers have been designed to overcome biological barriers encountered at each stage, from drug administration to the cancerous lesion. Stabilizing circulation and functionalization of the targeting surface impart high tumor accumulation properties to nanocarriers. However, various cells can recognize and infiltrate the tumor microenvironment more efficiently than synthetic carriers via overexpression of adhesive ligands, particularly in inflamed stroma of tumors. Thus, a new field of nanomedicine, called biomimicry, has evolved to generate nanoparticles with the same biological characteristics as cells that naturally infiltrate tumors. Revolutionary synthetic processes have been developed to transfer the cell membrane of leukocytes and mesenchymal cells to synthetic carriers. In addition, cells can generate their own "nanocarriers," known as exosomes, to transport molecular messages to distant sites, while biomimicry of viral and bacterial agents allows high targeting efficiency towards inflammatory immune cells. Alterations in the protein expression in cancer cells caused by inflammation can also be exploited for drug delivery. Finally, new developments in biomimetic drug delivery focus on turning the infiltrating cells into microcarriers that can actively perfuse the tumor and eventually release their therapeutic payload. In this review, we summarize recent developments in biomimetic drug delivery with a particular focus on targeting the tumor inflammatory microenvironment.


Subject(s)
Drug Carriers , Neoplasms , Humans , Drug Carriers/therapeutic use , Biomimetics , Nanomedicine , Neoplasms/drug therapy , Neoplasms/pathology , Inflammation/drug therapy , Tumor Microenvironment
16.
J Virus Erad ; 8(1): 100063, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35198235

ABSTRACT

BACKGROUND: The Russian Federation has the largest paediatric hepatitis C virus (HCV) disease burden in the World Health Organization European region with an estimated 118,000 children living with HCV viraemia. Direct-acting antivirals (DAAs) have been available for adults in Russia since 2015 and approved for treatment of adolescents aged ≥12 years since 2019. We evaluated DAA availability and uptake for HCV treatment of children and adolescents and clinical practices on diagnosis and management of paediatric HCV in Russia. METHODS: A survey was distributed to regional ministries of health in 85 administrative regions during September 2020. The survey consisted of 22 items collecting data on: type of facility, aggregate patient characteristics, HCV testing practices for children and pregnant women and HCV management and treatment practices for children. RESULTS: Survey responses were received from 37 of the 85 regions in Russia (response rate 44%). 2159 children and adolescents with chronic HCV were in follow-up; 1089 (50%) were female. Of 2080 children with available data on age-groups, 134 (6%) were <3 years, 336 (16%) 3-<6 years, 718 (35%) 6-<12 years and 892 (43%) 12-<18 years. 134 (15%) of 892 adolescents ≥12 years received DAAs, 96 (72%) glecaprevir/pibrentasvir, 26 (19%) sofosbuvir, 8 (6%) daclatasvir and 4 (3%) sofosbuvir/ledipasvir. CONCLUSIONS: This study provides a baseline of DAA uptake in early stages of rollout for children and adolescents. The use of DAAs for treatment of adolescents in Russia presents a unique opportunity for HCV micro-elimination in this population.

17.
Methods ; 203: 431-446, 2022 07.
Article in English | MEDLINE | ID: mdl-33839288

ABSTRACT

Infectious diseases are a global health problem affecting billions of people. Developing rapid and sensitive diagnostic tools is key for successful patient management and curbing disease spread. Currently available diagnostics are very specific and sensitive but time-consuming and require expensive laboratory settings and well-trained personnel; thus, they are not available in resource-limited areas, for the purposes of large-scale screenings and in case of outbreaks and epidemics. Developing new, rapid, and affordable point-of-care diagnostic assays is urgently needed. This review focuses on CRISPR-based technologies and their perspectives to become platforms for point-of-care nucleic acid detection methods and as deployable diagnostic platforms that could help to identify and curb outbreaks and emerging epidemics. We describe the mechanisms and function of different classes and types of CRISPR-Cas systems, including pros and cons for developing molecular diagnostic tests and applications of each type to detect a wide range of infectious agents. Many Cas proteins (Cas3, Cas9, Cas12, Cas13, Cas14 etc.) have been leveraged to create highly accurate and sensitive diagnostic tools combined with technologies of signal amplification and fluorescent, potentiometric, colorimetric, lateral flow assay detection and other. In particular, the most advanced platforms -- SHERLOCK/v2, DETECTR, CARMEN or CRISPR-Chip -- enable detection of attomolar amounts of pathogenic nucleic acids with specificity comparable to that of PCR but with minimal technical settings. Further developing CRISPR-based diagnostic tools promises to dramatically transform molecular diagnostics, making them easily affordable and accessible virtually anywhere in the world. The burden of socially significant diseases, frequent outbreaks, recent epidemics (MERS, SARS and the ongoing COVID-19) and outbreaks of zoonotic viruses (African Swine Fever Virus etc.) urgently need the developing and distribution of express-diagnostic tools. Recently devised CRISPR-technologies represent the unprecedented opportunity to reshape epidemiological surveillance and molecular diagnostics.


Subject(s)
African Swine Fever Virus , COVID-19 , Communicable Diseases , Animals , COVID-19/diagnosis , COVID-19/epidemiology , CRISPR-Cas Systems/genetics , Communicable Diseases/diagnosis , Communicable Diseases/genetics , Humans , Nucleic Acid Amplification Techniques/methods , Point-of-Care Systems , Swine
18.
Adv Ther ; 39(1): 430-440, 2022 01.
Article in English | MEDLINE | ID: mdl-34762287

ABSTRACT

INTRODUCTION: Viral infections, especially with hepatotropic viruses, may trigger autoimmune liver diseases (AILDs) and deteriorate their course. However, association of previous hepatitis B virus (HBV) infection (presence of anti-HBc with or without anti-HBs or HBV DNA in serum) with AILDs is poorly studied so far. The aim of the study was to assess the prevalence of previous hepatitis B virus infection markers and its clinical significance in patients with autoimmune liver diseases. METHODS: The study was based on the data obtained from 234 consecutive HBsAg-negative patients with AILDs [81 with autoimmune hepatitis (AIH), 122 with primary biliary cholangitis (PBC) and 31 with primary sclerosing cholangitis (PSC)] and 131 subjects of the control group without liver diseases. Blood samples of the enrolled patients were tested for anti-HBc and HBV DNA. Samples of liver tissue were examined by standard morphologic protocol and, in anti-HBc positive subjects, for HBV DNA. We assessed estimated risks of AILDs according to anti-HBc positivity and association of anti-HBc positivity with stage of liver fibrosis. RESULTS: Anti-HBc was detected in 14.5% participants in the control group vs 26.1% (p = 0.016) in patients with AILDs (including 27.1% subjects with PBC (p = 0.021 vs control group), in 29% of PSC and 23.5% in AIH. HBV DNA was detected in three patients with PBC and in one with AIH. Positive anti-HBc test result was associated with higher risk of AILDs-odds ratio (OR) = 2.078 [95% confidence interval (CI) 1.179-3.665], especially in PBC: OR (95% CI) 2.186 (1.165-4.101). Odds of advanced stage of liver fibrosis (F3-F4 by METAVIR) in anti-HBc-positive subjects with PBC were also higher compared to those who had no previous HBV infection: OR (95% CI) 2.614 (1.153-5.926). CONCLUSIONS: Significant proportions of patients with AILDs are anti-HBc positive, and some of them have OBI. Among patients with AILDs, anti-HBc-positivity is most widespread in the PBC group and in subjects with advanced stage of liver fibrosis. Our data may support the idea of an important role of previous HBV infection in the etiology and pathogenesis of AILDs (namely PBC).


Subject(s)
Hepatitis B , Liver Diseases , DNA, Viral , Hepatitis B/complications , Hepatitis B/epidemiology , Hepatitis B Antibodies , Hepatitis B Surface Antigens , Hepatitis B virus , Humans
19.
Nucleic Acid Ther ; 32(1): 14-28, 2022 02.
Article in English | MEDLINE | ID: mdl-34797701

ABSTRACT

After almost a decade of using CRISPR/Cas9 systems to edit target genes, CRISPR/Cas9 and related technologies are rapidly moving to clinical trials. Hepatitis B virus (HBV), which causes severe liver disease, cannot be cleared by modern antivirals, but represents an ideal target for CRISPR/Cas9 systems. Early studies demonstrated very high antiviral potency of CRISPR/Cas9 and supported its use for developing a cure against chronic HBV infection. This review discusses the key issues that must be solved to make CRISPR/Cas9 an anti-HBV therapy.


Subject(s)
CRISPR-Associated Protein 9 , Hepatitis B , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/genetics , DNA, Circular , DNA, Viral/genetics , Hepatitis B/drug therapy , Hepatitis B/genetics , Humans
20.
Viruses ; 13(11)2021 11 11.
Article in English | MEDLINE | ID: mdl-34835064

ABSTRACT

CRISPR/Cas is a powerful tool for studying the role of genes in viral infections. The invention of CRISPR screening technologies has made it possible to untangle complex interactions between the host and viral agents. Moreover, whole-genome and pathway-specific CRISPR screens have facilitated identification of novel drug candidates for treating viral infections. In this review, we highlight recent developments in the fields of CRISPR/Cas with a focus on the use of CRISPR screens for studying viral infections and identifying new candidate genes to aid development of antivirals.


Subject(s)
CRISPR-Cas Systems , Genetic Techniques , Genome-Wide Association Study/methods , High-Throughput Screening Assays/methods , Virus Diseases/genetics , Virus Diseases/virology , Viruses/genetics , Drug Discovery , Host Microbial Interactions , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...