Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 45(4): 4915-4931, 2023 Apr.
Article in English | MEDLINE | ID: mdl-32750839

ABSTRACT

Iterative neural networks (INN) are rapidly gaining attention for solving inverse problems in imaging, image processing, and computer vision. INNs combine regression NNs and an iterative model-based image reconstruction (MBIR) algorithm, often leading to both good generalization capability and outperforming reconstruction quality over existing MBIR optimization models. This paper proposes the first fast and convergent INN architecture, Momentum-Net, by generalizing a block-wise MBIR algorithm that uses momentum and majorizers with regression NNs. For fast MBIR, Momentum-Net uses momentum terms in extrapolation modules, and noniterative MBIR modules at each iteration by using majorizers, where each iteration of Momentum-Net consists of three core modules: image refining, extrapolation, and MBIR. Momentum-Net guarantees convergence to a fixed-point for general differentiable (non)convex MBIR functions (or data-fit terms) and convex feasible sets, under two asymptomatic conditions. To consider data-fit variations across training and testing samples, we also propose a regularization parameter selection scheme based on the "spectral spread" of majorization matrices. Numerical experiments for light-field photography using a focal stack and sparse-view computational tomography demonstrate that, given identical regression NN architectures, Momentum-Net significantly improves MBIR speed and accuracy over several existing INNs; it significantly improves reconstruction quality compared to a state-of-the-art MBIR method in each application.

2.
Med Phys ; 50(4): 2195-2211, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35735056

ABSTRACT

PURPOSE: Dual-energy computed tomography (DECT) has widely been used in many applications that need material decomposition. Image-domain methods directly decompose material images from high- and low-energy attenuation images, and thus, are susceptible to noise and artifacts on attenuation images. The purpose of this study is to develop an improved iterative neural network (INN) for high-quality image-domain material decomposition in DECT, and to study its properties. METHODS: We propose a new INN architecture for DECT material decomposition. The proposed INN architecture uses distinct cross-material convolutional neural network (CNN) in image refining modules, and uses image decomposition physics in image reconstruction modules. The distinct cross-material CNN refiners incorporate distinct encoding-decoding filters and cross-material model that captures correlations between different materials. We study the distinct cross-material CNN refiner with patch-based reformulation and tight-frame condition. RESULTS: Numerical experiments with extended cardiac-torso phantom and clinical data show that the proposed INN significantly improves the image quality over several image-domain material decomposition methods, including a conventional model-based image decomposition (MBID) method using an edge-preserving regularizer, a recent MBID method using prelearned material-wise sparsifying transforms, and a noniterative deep CNN method. Our study with patch-based reformulations reveals that learned filters of distinct cross-material CNN refiners can approximately satisfy the tight-frame condition. CONCLUSIONS: The proposed INN architecture achieves high-quality material decompositions using iteration-wise refiners that exploit cross-material properties between different material images with distinct encoding-decoding filters. Our tight-frame study implies that cross-material CNN refiners in the proposed INN architecture are useful for noise suppression and signal restoration.


Subject(s)
Algorithms , Tomography, X-Ray Computed , Tomography, X-Ray Computed/methods , Head , Neural Networks, Computer , Phantoms, Imaging , Image Processing, Computer-Assisted/methods
3.
Nat Commun ; 12(1): 2413, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33893300

ABSTRACT

Recent years have seen the rapid growth of new approaches to optical imaging, with an emphasis on extracting three-dimensional (3D) information from what is normally a two-dimensional (2D) image capture. Perhaps most importantly, the rise of computational imaging enables both new physical layouts of optical components and new algorithms to be implemented. This paper concerns the convergence of two advances: the development of a transparent focal stack imaging system using graphene photodetector arrays, and the rapid expansion of the capabilities of machine learning including the development of powerful neural networks. This paper demonstrates 3D tracking of point-like objects with multilayer feedforward neural networks and the extension to tracking positions of multi-point objects. Computer simulations further demonstrate how this optical system can track extended objects in 3D, highlighting the promise of combining nanophotonic devices, new optical system designs, and machine learning for new frontiers in 3D imaging.

4.
IEEE Trans Med Imaging ; 39(11): 3512-3522, 2020 11.
Article in English | MEDLINE | ID: mdl-32746100

ABSTRACT

Image reconstruction in low-count PET is particularly challenging because gammas from natural radioactivity in Lu-based crystals cause high random fractions that lower the measurement signal-to-noise-ratio (SNR). In model-based image reconstruction (MBIR), using more iterations of an unregularized method may increase the noise, so incorporating regularization into the image reconstruction is desirable to control the noise. New regularization methods based on learned convolutional operators are emerging in MBIR. We modify the architecture of an iterative neural network, BCD-Net, for PET MBIR, and demonstrate the efficacy of the trained BCD-Net using XCAT phantom data that simulates the low true coincidence count-rates with high random fractions typical for Y-90 PET patient imaging after Y-90 microsphere radioembolization. Numerical results show that the proposed BCD-Net significantly improves CNR and RMSE of the reconstructed images compared to MBIR methods using non-trained regularizers, total variation (TV) and non-local means (NLM). Moreover, BCD-Net successfully generalizes to test data that differs from the training data. Improvements were also demonstrated for the clinically relevant phantom measurement data where we used training and testing datasets having very different activity distributions and count-levels.


Subject(s)
Image Processing, Computer-Assisted , Yttrium Radioisotopes , Algorithms , Humans , Neural Networks, Computer , Phantoms, Imaging , Positron-Emission Tomography , Radiation Dosage , Signal-To-Noise Ratio
5.
IEEE Trans Image Process ; 29(1): 2108-2122, 2020.
Article in English | MEDLINE | ID: mdl-31484120

ABSTRACT

Convolutional operator learning is gaining attention in many signal processing and computer vision applications. Learning kernels has mostly relied on so-called patch-domain approaches that extract and store many overlapping patches across training signals. Due to memory demands, patch-domain methods have limitations when learning kernels from large datasets - particularly with multi-layered structures, e.g., convolutional neural networks - or when applying the learned kernels to high-dimensional signal recovery problems. The so-called convolution approach does not store many overlapping patches, and thus overcomes the memory problems particularly with careful algorithmic designs; it has been studied within the "synthesis" signal model, e.g., convolutional dictionary learning. This paper proposes a new convolutional analysis operator learning (CAOL) framework that learns an analysis sparsifying regularizer with the convolution perspective, and develops a new convergent Block Proximal Extrapolated Gradient method using a Majorizer (BPEG-M) to solve the corresponding block multi-nonconvex problems. To learn diverse filters within the CAOL framework, this paper introduces an orthogonality constraint that enforces a tight-frame filter condition, and a regularizer that promotes diversity between filters. Numerical experiments show that, with sharp majorizers, BPEG-M significantly accelerates the CAOL convergence rate compared to the state-of-the-art block proximal gradient (BPG) method. Numerical experiments for sparse-view computational tomography show that a convolutional sparsifying regularizer learned via CAOL significantly improves reconstruction quality compared to a conventional edge-preserving regularizer. Using more and wider kernels in a learned regularizer better preserves edges in reconstructed images.

6.
Neuroimage Clin ; 24: 101930, 2019.
Article in English | MEDLINE | ID: mdl-31630026

ABSTRACT

Recent evidence of short-term alterations in brain physiology associated with repeated exposure to moderate intensity subconcussive head acceleration events (HAEs), prompts the question whether these alterations represent an underlying neural injury. A retrospective analysis combining counts of experienced HAEs and longitudinal diffusion-weighted imaging explored whether greater exposure to incident mechanical forces was associated with traditional diffusion-based measures of neural injury-reduced fractional anisotropy (FA) and increased mean diffusivity (MD). Brains of high school athletes (N = 61) participating in American football exhibited greater spatial extents (or volumes) experiencing substantial changes (increases and decreases) in both FA and MD than brains of peers who do not participate in collision-based sports (N = 15). Further, the spatial extents of the football athlete brain exhibiting traditional diffusion-based markers of neural injury were found to be significantly correlated with the cumulative exposure to HAEs having peak translational acceleration exceeding 20 g. This finding demonstrates that subconcussive HAEs induce low-level neurotrauma, with prolonged exposure producing greater accumulation of neural damage. The duration and extent of recovery associated with periods in which athletes do not experience subconcussive HAEs now represents a priority for future study, such that appropriate participation and training schedules may be developed to minimize the risk of long-term neurological dysfunction.


Subject(s)
Acceleration/adverse effects , Athletes , Brain/diagnostic imaging , Football/injuries , Students , White Matter/diagnostic imaging , Adolescent , Brain Concussion/diagnostic imaging , Brain Concussion/etiology , Diffusion Magnetic Resonance Imaging/trends , Head/diagnostic imaging , Humans , Male , Schools/trends
7.
IEEE Signal Process Lett ; 26(8): 1137-1141, 2019 Aug.
Article in English | MEDLINE | ID: mdl-32313415

ABSTRACT

Convolutional analysis operator learning (CAOL) enables the unsupervised training of (hierarchical) convolutional sparsifying operators or autoencoders from large datasets. One can use many training images for CAOL, but a precise understanding of the impact of doing so has remained an open question. This paper presents a series of results that lend insight into the impact of dataset size on the filter update in CAOL. The first result is a general deterministic bound on errors in the estimated filters, and is followed by a bound on the expected errors as the number of training samples increases. The second result provides a high probability analogue. The bounds depend on properties of the training data, and we investigate their empirical values with real data. Taken together, these results provide evidence for the potential benefit of using more training data in CAOL.

8.
IEEE Trans Image Process ; 27(4): 1697-1712, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28991744

ABSTRACT

Convolutional dictionary learning (CDL or sparsifying CDL) has many applications in image processing and computer vision. There has been growing interest in developing efficient algorithms for CDL, mostly relying on the augmented Lagrangian (AL) method or the variant alternating direction method of multipliers (ADMM). When their parameters are properly tuned, AL methods have shown fast convergence in CDL. However, the parameter tuning process is not trivial due to its data dependence and, in practice, the convergence of AL methods depends on the AL parameters for nonconvex CDL problems. To moderate these problems, this paper proposes a new practically feasible and convergent Block Proximal Gradient method using a Majorizer (BPG-M) for CDL. The BPG-M-based CDL is investigated with different block updating schemes and majorization matrix designs, and further accelerated by incorporating some momentum coefficient formulas and restarting techniques. All of the methods investigated incorporate a boundary artifacts removal (or, more generally, sampling) operator in the learning model. Numerical experiments show that, without needing any parameter tuning process, the proposed BPG-M approach converges more stably to desirable solutions of lower objective values than the existing state-of-the-art ADMM algorithm and its memory-efficient variant do. Compared with the ADMM approaches, the BPG-M method using a multi-block updating scheme is particularly useful in single-threaded CDL algorithm handling large data sets, due to its lower memory requirement and no polynomial computational complexity. Image denoising experiments show that, for relatively strong additive white Gaussian noise, the filters learned by BPG-M-based CDL outperform those trained by the ADMM approach.

9.
IEEE Trans Med Imaging ; 35(1): 354-68, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26336120

ABSTRACT

The theory and techniques of compressed sensing (CS) have shown their potential as a breakthrough in accelerating k-space data acquisition for parallel magnetic resonance imaging (pMRI). However, the performance of CS reconstruction models in pMRI has not been fully maximized, and CS recovery guarantees for pMRI are largely absent. To improve reconstruction accuracy from parsimonious amounts of k-space data while maintaining flexibility, a new CS SENSitivity Encoding (SENSE) pMRI reconstruction framework promoting joint sparsity (JS) across channels (JS CS SENSE) is proposed in this paper. The recovery guarantee derived for the proposed JS CS SENSE model is demonstrated to be better than that of the conventional CS SENSE model and similar to that of the coil-by-coil CS model. The flexibility of the new model is better than the coil-by-coil CS model and the same as that of CS SENSE. For fast image reconstruction and fair comparisons, all the introduced CS-based constrained optimization problems are solved with split Bregman, variable splitting, and combined-variable splitting techniques. For the JS CS SENSE model in particular, these techniques lead to an efficient algorithm. Numerical experiments show that the reconstruction accuracy is significantly improved by JS CS SENSE compared with the conventional CS SENSE. In addition, an accurate residual-JS regularized sensitivity estimation model is also proposed and extended to calibration-less (CaL) JS CS SENSE. Numerical results show that CaL JS CS SENSE outperforms other state-of-the-art CS-based calibration-less methods in particular for reconstructing non-piecewise constant images.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Brain/physiology , Computer Simulation , Humans
10.
Article in English | MEDLINE | ID: mdl-25571150

ABSTRACT

X-ray computed tomography (CT) scanners provide clinical value through high resolution and fast imaging. However, achievement of higher signal-to-noise ratios generally requires emission of more X-rays, resulting in greater dose delivered to the body of the patient. This is of concern, as higher dose leads to greater risk of cancer, particularly for those exposed at a younger age. Therefore, it is desirable to achieve comparable scan quality while limiting X-ray dose. One means to achieve this compound goal is the use of compressed sensing (CS). A novel framework is presented to combine CS theory with X-ray CT. According to the tensor discrete Fourier slice theorem, the 1-D DFT of discrete Radon transform data is exactly mapped on a Cartesian 2-D DFT grid. The nonuniform random density sampling of Fourier coefficients is made feasible by uniformly sampling projection angles at random. Application of the non-convex CS model further reduces the sufficient number of measurements by enhancing sparsity. The numerical results show that, with limited projection data, the non-convex CS model significantly improves reconstruction performance over the convex model.


Subject(s)
Algorithms , Fourier Analysis , Models, Theoretical , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Computer Simulation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...