Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters










Publication year range
1.
Arthritis Res Ther ; 25(1): 236, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38057865

ABSTRACT

BACKGROUND: Our preliminary study indicates that the multi-functional protein, prokineticin 2 (Prok2), is upregulated in osteoarthritic (OA) chondrocytes as a target of the hypoxia-inducible factor (HIF)-2α. This study aims to elucidate the potential roles of Prok2 in OA. METHODS: Prok2 expression was assessed through microarray analysis in chondrocytes and confirmed via immunostaining in OA cartilage. Experimental OA was induced through destabilization of the medial meniscus (DMM). Functions of Prok2 were assessed by adenoviral overexpression, intra-articular (IA) injection of recombinant Prok2 (rProk2), and knockdown of Prok2 in joint tissues. We also explored the potential utility of Prok2 as an OA biomarker using enzyme-linked immunosorbent assay (ELISA). RESULTS: HIF-2α upregulated Prok2, one of the prokineticin signaling components, in OA chondrocytes of mice and humans. Adenoviral overexpression of Prok2 in chondrocytes and cartilage explants, as well as the application of rProk2, led to an upregulation of matrix metalloproteinase (MMP)3 and MMP13. Consistently, the overexpression of Prok2 in joint tissues or IA injection of rProk2 exacerbated cartilage destruction and hindpaw mechanical allodynia induced by DMM. However, the knockdown of Prok2 in joint tissues did not significantly affect DMM-induced cartilage destruction. Additionally, despite being a secreted protein, the serum levels of Prok2 in OA mice and human OA patients were found to be below the range detected by ELISA. CONCLUSION: The upregulation of Prok2 exacerbates OA cartilage destruction and hindpaw mechanical allodynia. However, its knockdown is not sufficient to inhibit experimental OA and Prok2 is not a potential candidate serum biomarker of OA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Biomarkers/metabolism , Cartilage/metabolism , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Hyperalgesia , Osteoarthritis/metabolism
2.
Exp Mol Med ; 55(12): 2553-2563, 2023 12.
Article in English | MEDLINE | ID: mdl-38036731

ABSTRACT

Oral diseases exhibit a significant association with metabolic syndrome, including dyslipidemia. However, direct evidence supporting this relationship is lacking, and the involvement of cholesterol metabolism in the pathogenesis of periodontitis (PD) has yet to be determined. In this study, we showed that high cholesterol caused periodontal inflammation in mice. Cholesterol homeostasis in human gingival fibroblasts was disrupted by enhanced uptake through C-X-C motif chemokine ligand 16 (CXCL16), upregulation of cholesterol hydroxylase (CH25H), and the production of 25-hydroxycholesterol (an oxysterol metabolite of CH25H). Retinoid-related orphan receptor α (RORα) mediated the transcriptional upregulation of inflammatory mediators; consequently, PD pathogenesis mechanisms, including alveolar bone loss, were stimulated. Our collective data provided direct evidence that hyperlipidemia is a risk factor for PD and supported that inhibition of the CXCL16-CH25H-RORα axis is a potential treatment mechanism for PD as a systemic disorder manifestation.


Subject(s)
Alveolar Bone Loss , Metabolic Syndrome , Periodontitis , Humans , Mice , Animals , Alveolar Bone Loss/etiology , Inflammation , Homeostasis
3.
Arthritis Res Ther ; 25(1): 90, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37259103

ABSTRACT

BACKGROUND: This study was performed to develop therapeutic targets of osteoarthritis (OA) that can be targeted to alleviate OA development (i.e., cartilage destruction) and relieve the OA-associated joint pain. METHODS: The candidate molecule, STING (stimulator of interferon genes, encoded by Sting1), was identified by microarray analysis of OA-like mouse chondrocytes. Experimental OA in mice was induced by destabilization of the medial meniscus (DMM). STING functions in OA and hindpaw mechanical allodynia were evaluated by gain-of-function (intra-articular injection of a STING agonist) and loss-of-function (Sting1-/- mice) approaches. RESULTS: DNA damage was observed in OA-like chondrocytes. Cytosolic DNA sensors, STING and its upstream molecule, cGAS (cyclic GMP-AMP synthase), were upregulated in OA chondrocytes and cartilage of mouse and human. Genetic ablation of STING in mice (Sting1-/-) alleviated OA manifestations (cartilage destruction and subchondral bone sclerosis) and hindpaw mechanical allodynia. In contrast, stimulation of STING signaling in joint tissues by intra-articular injection of cGAMP exacerbated OA manifestations and mechanical sensitization. Mechanistic studies on the regulation of hindpaw mechanical allodynia revealed that STING regulates the expression of peripheral sensitization molecules in the synovium and meniscus of mouse knee joints. CONCLUSION: Our results indicated that STING, which senses damaged cytosolic DNA and accordingly activates the innate immune response, regulates OA pathogenesis and hindpaw mechanical allodynia. Therefore, inhibition of STING could be a therapeutic approach to inhibit OA cartilage destruction and relieve the associated mechanical sensitization in model mice.


Subject(s)
Cartilage, Articular , Membrane Proteins , Osteoarthritis , Animals , Cartilage/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , Disease Models, Animal , DNA/metabolism , Hyperalgesia , Osteoarthritis/metabolism , Membrane Proteins/metabolism
4.
Arthritis Res Ther ; 23(1): 114, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33853646

ABSTRACT

BACKGROUND: Ribonucleases (RNases) play central roles in the post-transcriptional regulation of mRNA stability. Our preliminary results revealed that the endonuclease Regnase-1 is specifically upregulated in osteoarthritic chondrocytes. We herein explored the possible functions and regulatory mechanisms of Regnase-1 in a mouse model of osteoarthritis (OA). METHODS: The expression and target genes of Regnase-1 were identified by microarray analysis in primary-culture mouse articular chondrocytes. Experimental OA in mice was induced by destabilization of the medial meniscus (DMM). The function of Regnase-1 in DMM-induced post-traumatic OA mice was examined by adenovirus-mediated overexpression or knockdown in knee joint tissues, and also by using Regnase-1 heterozygous knockout mice (Zc3h12a+/-). RESULTS: Among the RNases, Regnase-1 was exclusively upregulated in chondrocytes stimulated with OA-associated catabolic factors. Adenovirus-mediated overexpression or knockdown of Regnase-1 alone in joint tissues did not cause OA-like changes. However, overexpression of Regnase-1 in joint tissues significantly ameliorated DMM-induced post-traumatic OA cartilage destruction, whereas knockdown or genetic ablation of Regnase-1 exacerbated DMM-induced cartilage destruction. Mechanistic studies suggested that Regnase-1 suppresses cartilage destruction by modulating the expression of matrix-degrading enzymes in chondrocytes. CONCLUSION: Our results collectively suggest that upregulated Regnase-1 in OA chondrocytes may function as a chondro-protective effector molecule during OA pathogenesis by forming a negative feedback loop of catabolic signals, such as matrix-degrading enzyme expression, in OA chondrocytes.


Subject(s)
Cartilage, Articular , Chondrocytes , Osteoarthritis , Ribonucleases/genetics , Animals , Endonucleases , Feedback, Physiological , Mice , Mice, Knockout , Osteoarthritis/genetics
5.
Exp Mol Med ; 53(4): 560-571, 2021 04.
Article in English | MEDLINE | ID: mdl-33795795

ABSTRACT

Zinc is a trace element that is essential for immune responses. Therefore, changes in cellular zinc levels in specific immune cells may influence inflammatory autoimmune diseases, such as rheumatoid arthritis (RA). However, the regulation of zinc mobilization in immune cells and its role in the pathogenesis of RA are not fully understood. Thus, we investigated the roles of zinc transporters in RA pathogenesis. We demonstrated that ZIP8 was specifically upregulated in CD4+ T cells that infiltrated the inflamed joint and that ZIP8 deficiency in CD4+ T cells abrogated collagen-induced arthritis. ZIP8 deficiency dramatically affected zinc influx in effector T cells and profoundly reduced T cell receptor (TCR)-mediated signaling, including NF-κB and MAPK signaling, which are pathways that are involved in T helper (Th) 17 cell differentiation. Taken together, our findings suggest that ZIP8 depletion in CD4+ T cells attenuates TCR signaling due to insufficient cellular zinc, thereby reducing the function of effector CD4+ T cells, including Th17 cells. Our results also suggest that targeting ZIP8 may be a useful strategy to inhibit RA development and pathogenesis.


Subject(s)
Arthritis, Experimental/etiology , Arthritis, Experimental/metabolism , Cation Transport Proteins/genetics , Disease Susceptibility , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , Arthritis, Experimental/pathology , Biomarkers , Cation Transport Proteins/metabolism , Cell Differentiation/immunology , Disease Models, Animal , Disease Progression , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Immunophenotyping , Lymphocyte Activation , Mice, Knockout , Synovial Membrane/metabolism , Synovial Membrane/pathology , T-Lymphocyte Subsets/pathology , Th17 Cells/immunology , Th17 Cells/metabolism , Th17 Cells/pathology
6.
J Cell Physiol ; 236(10): 6963-6973, 2021 10.
Article in English | MEDLINE | ID: mdl-33748969

ABSTRACT

Hypoxic environment is essential for chondrocyte maturation and longitudinal bone growth. Although hypoxia-inducible factor 1 alpha (Hif-1α) has been known as a key player for chondrocyte survival and function, the function of Hif-2α in cartilage is mechanistically and clinically relevant but remains unknown. Here we demonstrated that Hif-2α was a novel inhibitor of chondrocyte maturation through downregulation of Runx2 stability. Mechanistically, Hif-2α binding to Runx2 inhibited chondrocyte maturation by Runx2 degradation through disrupting Runx2/Cbfß complex formation. The Hif-2α-mediated-Runx2 degradation could be rescued by Cbfß transfection due to the increase of Runx2/Cbfß complex formation. Consistently, mesenchymal cells derived from Hif-2α heterozygous mice were more rapidly differentiated into hypertrophic chondrocytes than those of wild-type mice in a micromass culture system. Collectively, these findings demonstrate that Hif-2α is a novel inhibitor for chondrocyte maturation by disrupting Runx2/Cbfß complex formation and consequential regulatory activity.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Chondrocytes/metabolism , Chondrogenesis , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Hypoxia , Cell Line, Tumor , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor beta Subunit/genetics , Core Binding Factor beta Subunit/metabolism , Mice, Knockout , Protein Stability , Proteolysis , Rats , Ubiquitination
7.
Arthritis Rheumatol ; 73(8): 1451-1460, 2021 08.
Article in English | MEDLINE | ID: mdl-33559324

ABSTRACT

OBJECTIVE: Osteoarthritis (OA) is initiated by pathogenic factors produced by multiple stimuli, including mechanical stress, metabolic stress, and/or inflammaging. This study was undertaken to identify novel low-grade inflammation-associated pathogenic mediators of OA. METHODS: Candidate pathogenic molecules were screened using microarray data obtained from chondrocytes exposed to OA-associated catabolic factors. In mice with OA generated by destabilization of the medial meniscus (DMM), low-grade inflammation was induced by a high-fat diet or endotoxemia. Functions of candidate molecules in OA pathogenesis were examined using primary-culture chondrocytes from mice with DMM-induced OA, following intraarticular injection of adenovirus expressing the candidate gene. Specific functions of candidate genes were evaluated using whole-body gene-knockout mice. RESULTS: Bioinformatics analysis identified multiple candidate pathogenic factors that were associated with low-grade inflammation, including components of the Toll-like receptor (TLR) signaling pathways (e.g., TLR-2, TLR-4, lipopolysaccharide binding protein [LBP], and CD14). Overexpression of the individual TLR signaling components in mouse joint tissue did not alter cartilage homeostasis. However, the low-grade inflammation induced by a high-fat diet or endotoxemia markedly enhanced posttraumatic OA cartilage destruction in mice, and this exacerbation of cartilage destruction was significantly abrogated in LBP-/- and CD14-/- mice. Additionally, LBP and CD14 were found to be necessary for the expression of matrix-degrading enzymes in mouse chondrocytes treated with proinflammatory cytokines. CONCLUSION: LBP and CD14, which are accessory molecules of TLRs, are necessary for the exacerbation of posttraumatic OA cartilage destruction resulting from low-grade inflammation, such as that triggered by a high-fat diet or endotoxemia.


Subject(s)
Acute-Phase Proteins/metabolism , Carrier Proteins/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharide Receptors/metabolism , Membrane Glycoproteins/metabolism , Osteoarthritis/genetics , Toll-Like Receptors/metabolism , Animals , Cartilage, Articular , Chondrocytes/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Endotoxemia/complications , Inflammation , Menisci, Tibial/metabolism , Mice , Mice, Knockout , Osteoarthritis/etiology , Signal Transduction/genetics
8.
Exp Mol Med ; 52(8): 1198-1208, 2020 08.
Article in English | MEDLINE | ID: mdl-32788658

ABSTRACT

As an essential nutrient and trace element, selenium is required for living organisms and its beneficial roles in human health have been well recognized. The role of selenium is mainly played through selenoproteins synthesized by the selenium metabolic system. Selenoproteins have a wide range of cellular functions including regulation of selenium transport, thyroid hormones, immunity, and redox homeostasis. Selenium deficiency contributes to various diseases, such as cardiovascular disease, cancer, liver disease, and arthropathy-Kashin-Beck disease (KBD) and osteoarthritis (OA). A skeletal developmental disorder, KBD has been reported in low-selenium areas of China, North Korea, and the Siberian region of Russia, and can be alleviated by selenium supplementation. OA, the most common form of arthritis, is a degenerative disease caused by an imbalance in matrix metabolism and is characterized by cartilage destruction. Oxidative stress serves as a major cause of the initiation of OA pathogenesis. Selenium deficiency and dysregulation of selenoproteins are associated with impairments to redox homeostasis in cartilage. We review the recently explored roles of selenium metabolism and selenoproteins in cartilage with an emphasis on two arthropathies, KBD and OA. Moreover, we discuss the potential of therapeutic strategies targeting the biological functions of selenium and selenoproteins for OA treatment.


Subject(s)
Cartilage/metabolism , Homeostasis , Joint Diseases/metabolism , Selenium/metabolism , Selenoproteins/metabolism , Animals , Humans , Models, Biological
9.
Cell Death Dis ; 10(2): 47, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30718470

ABSTRACT

We previously showed that mice with knockout of Cytl1, a functionally uncharacterized cytokine candidate, exhibit normal endochondral ossification and long-bone development. Here, we investigated the potential functions of CYTL1 in bone homeostasis. We found that Cytl1-/- mice exhibited higher bone mass than wild-type littermates and resisted ovariectomy-induced bone resorption. This led us to investigate the functions of CYTL1 in the osteogenesis and osteoclastogenesis of bone marrow-derived stem cells. CYTL1 was down-regulated during the osteogenesis of human mesenchymal stem cells (hMSCs). The osteogenesis of hMSCs was inhibited by overexpression or exogenous treatment of CYTL1, but enhanced by CYTL1 knockdown. CYTL1 decreased osteogenesis by inhibiting RUNX2 and promoted proliferation among undifferentiated hMSCs, but stimulated apoptosis among osteogenically differentiating cells. Finally, Cytl1-/- mice exhibited inhibition of osteoclast activity and the osteoclastogenesis of bone marrow-derived macrophages. Our results collectively suggest that CYTL1 negatively regulates the osteogenesis of MSCs and positively regulates osteoclastogenesis to modulate bone mass in mice.


Subject(s)
Blood Proteins/metabolism , Cytokines/metabolism , Macrophages/cytology , Macrophages/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Animals , Blood Proteins/biosynthesis , Bone Resorption , Bone and Bones/cytology , Bone and Bones/metabolism , Cell Differentiation/physiology , Cytokines/biosynthesis , Cytokines/genetics , Homeostasis , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteogenesis , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Nature ; 566(7743): 254-258, 2019 02.
Article in English | MEDLINE | ID: mdl-30728500

ABSTRACT

Osteoarthritis-the most common form of age-related degenerative whole-joint disease1-is primarily characterized by cartilage destruction, as well as by synovial inflammation, osteophyte formation and subchondral bone remodelling2,3. However, the molecular mechanisms that underlie the pathogenesis of osteoarthritis are largely unknown. Although osteoarthritis is currently considered to be associated with metabolic disorders, direct evidence for this is lacking, and the role of cholesterol metabolism in the pathogenesis of osteoarthritis has not been fully investigated4-6. Various types of cholesterol hydroxylases contribute to cholesterol metabolism in extrahepatic tissues by converting cellular cholesterol to circulating oxysterols, which regulate diverse biological processes7,8. Here we show that the CH25H-CYP7B1-RORα axis of cholesterol metabolism in chondrocytes is a crucial catabolic regulator of the pathogenesis of osteoarthritis. Osteoarthritic chondrocytes had increased levels of cholesterol because of enhanced uptake, upregulation of cholesterol hydroxylases (CH25H and CYP7B1) and increased production of oxysterol metabolites. Adenoviral overexpression of CH25H or CYP7B1 in mouse joint tissues caused experimental osteoarthritis, whereas knockout or knockdown of these hydroxylases abrogated the pathogenesis of osteoarthritis. Moreover, retinoic acid-related orphan receptor alpha (RORα) was found to mediate the induction of osteoarthritis by alterations in cholesterol metabolism. These results indicate that osteoarthritis is a disease associated with metabolic disorders and suggest that targeting the CH25H-CYP7B1-RORα axis of cholesterol metabolism may provide a therapeutic avenue for treating osteoarthritis.


Subject(s)
Cholesterol/metabolism , Cytochrome P450 Family 7/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Osteoarthritis/metabolism , Steroid Hydroxylases/metabolism , Animals , Biological Transport , Chondrocytes/enzymology , Chondrocytes/metabolism , Male , Mice , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Osteoarthritis/enzymology , Osteoarthritis/pathology , Oxysterols/metabolism , Steroid Hydroxylases/deficiency , Up-Regulation
11.
Nat Commun ; 10(1): 77, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30622281

ABSTRACT

Osteoarthritis (OA) is a whole-joint disease characterized by cartilage destruction and other whole-joint pathological changes. There is currently no effective disease-modifying therapy. Here we investigate the post-transcriptional mRNA regulation of OA-modulating proteins in chondrocytes and show that the ZFP36 family member, ZFP36L1, is specifically upregulated in OA chondrocytes and OA cartilage of humans and mice. Adenovirus-mediated overexpression of ZFP36L1 alone in mouse knee-joint tissue does not modulate OA pathogenesis. However, genetic ablation or silencing of Zfp36l1 significantly abrogates experimental OA in mice. Knockdown of Zfp36l1 increases the mRNA expression of two heat shock protein 70 (HSP70) family members, which act as its direct targets. Furthermore, overexpression of HSPA1A in joint tissues protects mice against experimental OA by inhibiting chondrocyte apoptosis. Our results indicate that the RNA-binding protein, ZFP36L1, regulates HSP70 family members that appear to protect against OA pathogenesis by inhibiting chondrocyte apoptosis.


Subject(s)
Butyrate Response Factor 1/metabolism , HSP70 Heat-Shock Proteins/genetics , Nuclear Proteins/metabolism , Osteoarthritis/pathology , RNA-Binding Proteins/metabolism , Animals , Apoptosis , Butyrate Response Factor 1/genetics , Cartilage, Articular/cytology , Cartilage, Articular/pathology , Cells, Cultured , Chondrocytes , Disease Models, Animal , Gene Expression Profiling , Gene Knockdown Techniques , HSP70 Heat-Shock Proteins/metabolism , Humans , Knee Joint , Male , Mice , Mice, Inbred C57BL , Nuclear Proteins/genetics , Osteoarthritis/genetics , Osteoarthritis/surgery , Primary Cell Culture , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Up-Regulation
12.
Ann Rheum Dis ; 78(3): 421-428, 2019 03.
Article in English | MEDLINE | ID: mdl-30610061

ABSTRACT

OBJECTIVE: Osteoarthritis (OA) appears to be associated with various metabolic disorders, but the potential contribution of amino acid metabolism to OA pathogenesis has not been clearly elucidated. Here, we explored whether alterations in the amino acid metabolism of chondrocytes could regulate OA pathogenesis. METHODS: Expression profiles of amino acid metabolism-regulating genes in primary-culture passage 0 mouse chondrocytes were examined by microarray analysis, and selected genes were further characterised in mouse OA chondrocytes and OA cartilage of human and mouse models. Experimental OA in mice was induced by destabilisation of the medial meniscus (DMM) or intra-articular (IA) injection of adenoviruses expressing catabolic regulators. The functional consequences of arginase II (Arg-II) were examined in Arg2-/- mice and those subjected to IA injection of an adenovirus encoding Arg-II (Ad-Arg-II). RESULTS: The gene encoding Arg-II, an arginine-metabolising enzyme, was specifically upregulated in chondrocytes under various pathological conditions and in OA cartilage from human patients with OA and various mouse models. Adenovirus-mediated overexpression of Arg-II in mouse joint tissues caused OA pathogenesis, whereas genetic ablation of Arg2 in mice (Arg2-/-) abolished all manifestations of DMM-induced OA. Mechanistically, Arg-II appears to cause OA cartilage destruction at least partly by upregulating the expression of matrix-degrading enzymes (matrix metalloproteinase 3 [MMP3] and MMP13) in chondrocytes via the nuclear factor (NF)-κB pathway. CONCLUSIONS: Our results indicate that Arg-II is a crucial regulator of OA pathogenesis in mice. Although chondrocytes of human and mouse do not identically, but similarly, respond to Arg-II, our results suggest that Arg-II could be a therapeutic target of OA pathogenesis.


Subject(s)
Arginase/physiology , Arthritis, Experimental/enzymology , Cartilage, Articular/enzymology , Chondrocytes/enzymology , Osteoarthritis/enzymology , Animals , Arthritis, Experimental/chemically induced , Disease Models, Animal , Humans , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 3/metabolism , Mice , Osteoarthritis/chemically induced , Up-Regulation
13.
Arthritis Res Ther ; 20(1): 161, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30071881

ABSTRACT

BACKGROUND: We recently demonstrated that BATF, a member of the activator protein-1 (AP-1) family, regulates osteoarthritic cartilage destruction. Here, we explored the roles and regulatory mechanisms of BATF in collagen-induced arthritis (CIA) in mice. METHODS: CIA and K/BxN serum transfer were used to generate inflammatory arthritis models in wild-type (WT) and Batf-/- mice. RA manifestations were determined by examining CIA incidence, clinical score, synovitis, synovial hyperplasia, angiogenesis in inflamed synovium, pannus formation, bone erosion, and cartilage destruction. Immune features in RA were analyzed by examining immune cell populations and cytokine production. RESULTS: BATF was upregulated in the synovial tissues of joints in which inflammatory arthritis had been caused by CIA or K/BxN serum transfer. The increases in CIA incidence, clinical score, and autoantibody production in CIA-induced WT mice were completely abrogated in the corresponding Batf-/- DBA/1 J mice. Genetic ablation of Batf also inhibited CIA-induced synovitis, synovial hyperplasia, angiogenesis in synovial tissues, pannus formation, bone erosion, and cartilage destruction. Batf knockout inhibited the differentiation of T helper (Th)17 cells and the conversion of CD4+Foxp3+ cells to CD4+IL-17+ cells. However, BATF did not modulate the functions of fibroblast-like synoviocytes (FLS), including the expressions of chemokines, matrix-degrading enzymes, vascular endothelial growth factor, and receptor activator of NF-κB ligand (RANKL). CONCLUSION: Our findings indicate that BATF crucially mediates CIA by regulating Th cell differentiation without directly affecting the functions of FLS.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , Basic-Leucine Zipper Transcription Factors/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation/immunology , Male , Mice , Mice, Inbred DBA , Mice, Knockout , Synoviocytes/metabolism
14.
BMB Rep ; 51(4): 165-166, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29366446

ABSTRACT

Osteoarthritis (OA) is the most common form of arthritis and is a leading cause of disability with a large socioeconomic cost. OA is a whole-joint disease characterized by cartilage destruction, synovial inflammation, osteophyte formation, and subchondral bone sclerosis. To date, however, no effective disease-modifying therapies for OA have been developed. The estrogen-related receptors (ERRs), a family of orphan nuclear receptor transcription factors, are composed of ERRα, ERRß, and ERRγ, which play diverse biological functions such as cellular energy metabolism. However, the role of ERRs in OA pathogenesis has not been studied yet. Among the ERR family members, ERRγ is markedly upregulated in human and various models of mouse OA cartilage. Adenovirus-mediated overexpression of ERRγ in the mouse knee joint tissue caused OA pathogenesis. Additionally, cartilage-specific ERRγ transgenic (Tg) mice exhibited enhanced experimental OA. Consistently, ERRγ in articular chondrocytes directly caused expression of matrix metalloproteinase (MMP) 3 and MMP13, which play a crucial role in cartilage destruction. In contrast, genetic ablation of Esrrg or shRNA-mediated Esrrg silencing in the joint tissues abrogated experimental OA in mice. These results collectively indicated that ERRγ is a novel catabolic regulator of OA pathogenesis and can be used as a therapeutic target for OA. [BMB Reports 2018; 51(4): 165-166].


Subject(s)
Osteoarthritis/metabolism , Receptors, Estrogen/metabolism , Animals , Arthritis, Experimental/pathology , Cartilage, Articular/pathology , Chondrocytes/metabolism , Humans , Inflammation/metabolism , Matrix Metalloproteinases/metabolism , Mice , Mice, Transgenic , Osteoarthritis/pathology , Receptors, Estrogen/genetics , Transcription Factors/metabolism
15.
Nat Commun ; 8(1): 2133, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29247173

ABSTRACT

The estrogen-related receptor (ERR) family of orphan nuclear receptor is composed of ERRα, ERRß, and ERRγ, which are known to regulate various isoform-specific functions under normal and pathophysiological conditions. Here, we investigate the involvement of ERRs in the pathogenesis of osteoarthritis (OA) in mice. Among ERR family members, ERRγ is markedly upregulated in cartilage from human OA patients and various mouse models of OA. Adenovirus-mediated overexpression of ERRγ in mouse knee joint or transgenic expression of ERRγ in cartilage leads to OA. ERRγ overexpression in chondrocytes directly upregulates matrix metalloproteinase (MMP)-3 and MMP13, which are known to play crucial roles in cartilage destruction in OA. In contrast, genetic ablation of Esrrg or shRNA-mediated downregulation of Esrrg in joint tissues abrogates experimental OA in mice. Our results collectively indicate that ERRγ is a novel catabolic regulator of OA pathogenesis.


Subject(s)
Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 3/genetics , Osteoarthritis/genetics , Receptors, Estrogen/genetics , Animals , Cells, Cultured , Chondrocytes/enzymology , Chondrocytes/metabolism , Gene Expression Profiling , Humans , Knee Joint/enzymology , Knee Joint/metabolism , Knee Joint/pathology , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 3/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Osteoarthritis/metabolism , RNA Interference , Receptors, Estrogen/metabolism , Up-Regulation
16.
Exp Mol Med ; 49(8): e368, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28819322

ABSTRACT

Periodontal disease is one of the most prevalent chronic disorders worldwide. It is accompanied by inflammation of the gingiva and destruction of periodontal tissues, leading to alveolar bone loss. Here, we focused on the role of adipokines, which are locally expressed by periodontal tissues, in the regulation of catabolic gene expression leading to periodontal inflammation. The expression of the nicotinamide phosphoribosyltransferase (NAMPT) adipokine was dramatically increased in inflamed human and mouse gingival tissues. NAMPT expression was also increased in lipopolysaccharide- and proinflammatory cytokine-stimulated primary cultured human gingival fibroblasts (GF). Adenovirus-mediated NAMPT (Ad-Nampt) overexpression upregulated the expression and activity of COX-2, MMP1 and MMP3 in human GF. The upregulation of IL-1ß- or Ad-Nampt-induced catabolic factors was significantly abrogated by the intracellular NAMPT (iNAMPT) inhibitor, FK866 or by the sirtuin (SIRT) inhibitor, nicotinamide (NIC). Recombinant NAMPT protein or extracellular NAMPT (eNAMPT) inhibition using a blocking antibody did not alter NAMPT target gene expression levels. Moreover, intragingival Ad-Nampt injection mediated periodontitis-like phenotypes including alveolar bone loss in mice. SIRT2, a part of the SIRT family, was positively associated with NAMPT actions in human GF. Furthermore, in vivo inhibition of the NAMPT-NAD+-SIRT axis by NIC injection in mice ameliorated the periodontal inflammation and alveolar bone erosion caused by intragingival injection of Ad-Nampt. Our findings indicate that NAMPT is highly upregulated in human GF, while its enzymatic activity acts as a crucial mediator of periodontal inflammation and alveolar bone destruction via regulation of COX-2, MMP1, and MMP3 levels.


Subject(s)
Cyclooxygenase 2/genetics , Cytokines/metabolism , Gene Expression Regulation , Gene Expression , Gingiva/pathology , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 3/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Periodontitis/genetics , Adipokines/metabolism , Adult , Alveolar Bone Loss/metabolism , Animals , Cytokines/genetics , Disease Models, Animal , Female , Fibroblasts/metabolism , Humans , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL , Morpholines/pharmacology , Niacinamide/pharmacology , Nicotinamide Phosphoribosyltransferase/genetics , Piperazines/pharmacology , Primary Cell Culture , Sirtuin 2/genetics , Sirtuin 2/metabolism
17.
Ann Rheum Dis ; 76(2): 427-434, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27147707

ABSTRACT

OBJECTIVE: The basic leucine zipper transcription factor, ATF-like (BATF), a member of the Activator protein-1 family, promotes transcriptional activation or repression, depending on the interacting partners (JUN-B or C-JUN). Here, we investigated whether the BATF/JUN complex exerts regulatory effects on catabolic and anabolic gene expression in chondrocytes and contributes to the pathogenesis of osteoarthritis (OA). METHODS: Primary cultured mouse chondrocytes were treated with proinflammatory cytokines (interleukin-1ß, IL-6 or tumour necrosis factor-α) or infected with adenoviruses carrying the Batf gene (Ad-Batf). Expression of BATF and JUN was examined in human and mouse experimental OA cartilage samples. Experimental OA in mice was induced by destabilisation of the medial meniscus or intra-articular injection of Ad-Batf. The chromatin immunoprecipitation assay was used to examine the binding of BATF and JUN to the promoter regions of candidate genes. RESULTS: Overexpression of BATF, which forms a heterodimeric complex with JUN-B and C-JUN, induced upregulation of matrix-degrading enzymes and downregulation of cartilage matrix molecules in chondrocytes. BATF expression in mouse joint tissues promoted OA cartilage destruction, and conversely, knockout of Batf in mice suppressed experimental OA. Pharmacological inhibition of BATF/JUN transcriptional activity reduced the expression of matrix-degrading enzymes and protected against experimental OA in mice. CONCLUSIONS: BATF/JUN-B and BATF/C-JUN complexes play important roles in OA cartilage destruction through regulating anabolic and catabolic gene expression in chondrocytes. Our findings collectively support the utility of BATF as a therapeutic target for OA.


Subject(s)
Arthritis, Experimental/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Osteoarthritis/genetics , Proto-Oncogene Proteins c-jun/genetics , Animals , Arthritis, Experimental/metabolism , Basic-Leucine Zipper Transcription Factors/drug effects , Basic-Leucine Zipper Transcription Factors/metabolism , Cartilage, Articular/cytology , Cartilage, Articular/drug effects , Cells, Cultured , Chondrocytes/drug effects , Cytokines/pharmacology , Humans , Interleukin-1beta/pharmacology , Interleukin-6/pharmacology , Male , Mice , Mice, Knockout , Osteoarthritis/metabolism , Proto-Oncogene Proteins c-jun/drug effects , Proto-Oncogene Proteins c-jun/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/pharmacology
18.
PLoS One ; 11(11): e0166480, 2016.
Article in English | MEDLINE | ID: mdl-27835665

ABSTRACT

Cytokine-like 1 (Cytl1) is a secreted protein that is involved in diverse biological processes. A comparative modeling study indicated that Cytl1 is structurally and functionally similar to monocyte chemoattractant protein 1 (MCP-1). As MCP-1 plays an important role in cardiac fibrosis (CF) and heart failure (HF), we investigated the role of Cytl1 in a mouse model of CF and HF. Cytl1 was upregulated in the failing mouse heart. Pressure overload-induced CF was significantly attenuated in cytl1 knock-out (KO) mice compared to that from wild-type (WT) mice. By contrast, adeno-associated virus (AAV)-mediated overexpression of cytl1 alone led to the development of CF in vivo. The endothelial-mesenchymal transition (EndMT) and the transdifferentiation of fibroblasts (FBs) to myofibroblasts (MFBs) have been suggested to contribute considerably to CF. Adenovirus-mediated overexpression of cytl1 was sufficient to induce these two critical CF-related processes in vitro, which were completely abrogated by co-treatment with SB-431542, an antagonist of TGF-ß receptor 1. Cytl1 induced the expression of TGF-ß2 both in vivo and in vitro. Antagonizing the receptor for MCP-1, C-C chemokine receptor type 2 (CCR2), with CAS 445479-97-0 did not block the pro-fibrotic activity of Cytl1 in vitro. Collectively, our data suggest that Cytl1 plays an essential role in CF likely through activating the TGF-ß-SMAD signaling pathway. Although the receptor for Cyt1l remains to be identified, Cytl1 provides a novel platform for the development of anti-CF therapies.


Subject(s)
Endomyocardial Fibrosis/metabolism , Heart Failure/metabolism , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/metabolism , Receptors, Cytokine/metabolism , Smad Proteins/metabolism , Transforming Growth Factor beta2/metabolism , Animals , Aorta/surgery , Benzamides/pharmacology , Cell Transdifferentiation/drug effects , Constriction, Pathologic/surgery , Dioxoles/pharmacology , Disease Models, Animal , Endomyocardial Fibrosis/genetics , Endomyocardial Fibrosis/pathology , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation , Heart Failure/genetics , Heart Failure/pathology , Humans , Male , Mice , Mice, Knockout , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Myofibroblasts/pathology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Receptors, Cytokine/genetics , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction , Smad Proteins/genetics , Transforming Growth Factor beta2/genetics
19.
Ann Rheum Dis ; 75(11): 2045-2052, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26903440

ABSTRACT

OBJECTIVE: The zinc-ZIP8-MTF1 axis induces metallothionein (MT) expression and is a catabolic regulator of experimental osteoarthritis (OA) in mice. The main aim of the current study was to explore the roles and underlying molecular mechanisms of MTs in OA pathogenesis. METHODS: Experimental OA in mice was induced by destabilisation of the medial meniscus or intra-articular injection of adenovirus carrying a target gene (Ad-Zip8, Ad-Mtf1, Ad-Epas1, Ad-Nampt, Ad-Mt1 or Ad-Mt2) into wild type, Zip8fl/fl; Col2a1-Cre, Mtf1fl/fl; Col2a1-Cre and Mt1/Mt2 double knockout mice. Primary cultured mouse chondrocytes were infected with Ad-Mt1 or Ad-Mt2, and gene expression profiles analysed via microarray and reverse transcription-PCR. Proteins in human and mouse OA cartilage were identified via immunostaining. Chondrocyte apoptosis in OA cartilage was determined using terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick end labelling (TUNEL). RESULTS: MTs were highly expressed in human and mouse OA cartilage. Hypoxia-inducible factor 2α, nicotinamide phosphoribosyltransferase and several proinflammatory cytokine pathways, as well as the zinc-ZIP8-MTF1 axis were identified as upstream regulators of MT expression. Genetic deletion of Mt1 and Mt2 enhanced cartilage destruction through increasing chondrocyte apoptosis. Unexpectedly, aberrant overexpression of MT2, but not MT1, induced upregulation of matrix-degrading enzymes and downregulation of matrix molecules through nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1) activation, ultimately leading to OA. CONCLUSIONS: MTs play an antiapoptotic role in post-traumatic OA. However, aberrant and chronic upregulation of MT2 triggers an imbalance between chondrocyte anabolism and catabolism, consequently accelerating OA development. Our findings collectively highlight pleiotropic roles of MTs as regulators of chondrocyte apoptosis as well as catabolic and anabolic pathways during OA pathogenesis.


Subject(s)
Apoptosis/genetics , Arthritis, Experimental/genetics , Chondrocytes/metabolism , Genetic Pleiotropy , Metallothionein/metabolism , Osteoarthritis/genetics , Animals , Arthritis, Experimental/pathology , Cartilage, Articular/metabolism , Humans , Mice , Mice, Knockout , Osteoarthritis/pathology , Real-Time Polymerase Chain Reaction
20.
Arthritis Res Ther ; 17: 302, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26510617

ABSTRACT

INTRODUCTION: Pannus formation and resulting cartilage destruction during rheumatoid arthritis (RA) depends on the migration of synoviocytes to cartilage tissue. Here, we focused on the role of hypoxia-inducible factor (HIF)-2α-induced chemokines by chondrocytes in the regulation of fibroblast-like synoviocyte (FLS) migration into the cartilage-pannus interface and cartilage erosion. METHODS: Collagen-induced arthritis (CIA), K/BxN serum transfer, and tumor necrosis factor-α transgenic mice were used as experimental RA models. Expression patterns of HIF-2α and chemokines were determined via immunostaining, Western blotting and RT-PCR. FLS motility was evaluated using transwell migration and invasion assays. The specific role of HIF-2α was determined via local deletion of HIF-2α in joint tissues or using conditional knockout (KO) mice. Cartilage destruction, synovitis and pannus formation were assessed via histological analysis. RESULTS: HIF-2α and various chemokines were markedly upregulated in degenerating cartilage and pannus of RA joints. HIF-2α induced chemokine expression by chondrocytes in both primary culture and cartilage tissue. HIF-2α -induced chemokines by chondrocytes regulated the migration and invasion of FLS. Local deletion of HIF-2α in joint tissues inhibited pannus formation adjacent to cartilage tissue and cartilage destruction caused by K/BxN serum transfer. Furthermore, conditional knockout of HIF-2α in cartilage blocked pannus formation in adjacent cartilage but not bone tissue, along with inhibition of cartilage erosion caused by K/BxN serum transfer. CONCLUSION: Our findings suggest that chemokines induced by IL-1ß or HIF-2α in chondrocytes regulate pannus expansion by stimulating FLS migration and invasion, leading to cartilage erosion during RA pathogenesis.


Subject(s)
Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Basic Helix-Loop-Helix Transcription Factors/immunology , Cartilage, Articular/pathology , Chondrocytes/immunology , Fibroblasts/metabolism , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Blotting, Western , Cartilage, Articular/immunology , Cartilage, Articular/metabolism , Cell Movement/immunology , Chemokines/immunology , Chondrocytes/metabolism , Chromatin Immunoprecipitation , Immunohistochemistry , Male , Mice , Mice, Knockout , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Synovial Membrane/immunology , Synovial Membrane/metabolism , Synovial Membrane/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...