Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 594
Filter
1.
Food Res Int ; 187: 114428, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763678

ABSTRACT

In this study, blackberry polysaccharide-selenium nanoparticles (BBP-24-3Se) were first prepared via Na2SeO3/Vc redox reaction, followed by coating with red blood cell membrane (RBC) to form core-shell structure polysaccharide-selenium nanoparticles (RBC@BBP-24-3Se). The particle size of BBP-24-3Se (167.1 nm) was increased to 239.8 nm (RBC@BBP-24-3Se) with an obvious core-shell structure after coating with RBC. FT-IR and XPS results indicated that the interaction between BBP-24-3 and SeNPs formed a new C-O···Se bond with valence state of Se0. Bioassays indicated that RBC coating markedly enhanced both the biocompatibility and bioabsorbability of RBC@BBP-24-3Se, and the absorption rate of RBC@BBP-24-3Se in HepG2 cells was 4.99 times higher than that of BBP-24-3Se at a concentration of 10 µg/mL. Compared with BBP-24-3Se, RBC@BBP-24-3Se possessed significantly heightened protective efficacy against oxidative damage and better regulation of glucose/lipid metabolism disorder induced by palmitic acid in HepG2 cells. Mechanistic studies demonstrated that RBC@BBP-24-3Se could effectively improve PI3K/AKT signaling pathway to promote glucose metabolism, inhibit the expression of lipid synthesis genes and up-regulate the expression of lipid-decomposing genes through AMPK signaling pathway to improve lipid metabolism. These results provided a theoretical basis for developing a new type of selenium supplement for the treatment of insulin resistance.


Subject(s)
Glucose , Lipid Metabolism , Nanoparticles , Polysaccharides , Rubus , Selenium , Humans , Selenium/chemistry , Hep G2 Cells , Polysaccharides/pharmacology , Polysaccharides/chemistry , Lipid Metabolism/drug effects , Glucose/metabolism , Nanoparticles/chemistry , Rubus/chemistry , Particle Size , Oxidative Stress/drug effects , Antioxidants/pharmacology , Signal Transduction/drug effects
2.
Kidney Med ; 6(5): 100815, 2024 May.
Article in English | MEDLINE | ID: mdl-38680391

ABSTRACT

Alport syndrome (AS) is a progressive hereditary kidney disease characterized by hematuria, proteinuria, and progressive kidney dysfunction accompanied by sensorineural hearing loss and ocular abnormalities. Pathogenic COL4A3-5 variants can result in different AS spectra. Further, kidney cysts have been reported in adults with AS. However, the relationship between kidney cysts and AS remains unclear. Here, we report 3 cases of AS in children that occurred with kidney cysts. The patient in case 1 was initially diagnosed with IgA nephropathy at the age of 8 years but later developed bilateral multiple kidney cysts at the age of 17 years, suggesting autosomal-dominant polycystic kidney disease. Whole-exome sequencing identified a pathogenic COL4A5 variant and confirmed the AS diagnosis. The patients in cases 2 and 3 had already been diagnosed with X-linked AS using kidney biopsy and genetic analysis. Initial kidney ultrasonography showed nephromegaly; however, kidney cyst formation was observed during their annual follow-up. Our study supports the association between AS and kidney cysts. Kidney cysts in adolescents with suspected AS should not discourage clinicians from testing for pathogenic COL4A3-COL4A5 variants. Early detection of kidney cysts is critical because it may indicate kidney disease progression.

3.
Article in English | MEDLINE | ID: mdl-38606845

ABSTRACT

To address the issue that a single coating agent cannot simultaneously enhance Li+-ion transport and electronic conductivity of Ni-rich cathode materials with surface modification, in the present study, we first successfully synthesized a LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material by a Taylor-flow reactor followed by surface coating with Li-BTJ and dispersion of vapor-grown carbon fibers treated with polydopamine (PDA-VGCF) filler in the composite slurry. The Li-BTJ hybrid oligomer coating can suppress side reactions and enhance ionic conductivity, and the PDA-VGCFs filler can increase electronic conductivity. As a result of the synergistic effect of the dual conducting agents, the cells based on the modified NCM811 electrodes deliver superior cycling stability and rate capability, as compared to the bare NCM811 electrode. The CR2032 coin-type cells with the NCM811@Li-BTJ + PDA-VGCF electrode retain a discharge specific capacity of ∼92.2% at 1C after 200 cycles between 2.8 and 4.3 V (vs Li/Li+), while bare NCM811 retains only 84.0%. Moreover, the NCM811@Li-BTJ + PDA-VGCF electrode-based cells reduced the total heat (Qt) by ca. 7.0% at 35 °C over the bare electrode. Remarkably, the Li-BTJ hybrid oligomer coating on the surface of the NCM811 active particles acts as an artificial cathode electrolyte interphase (ACEI) layer, mitigating irreversible surface phase transformation of the layered NCM811 cathode and facilitating Li+ ion transport. Meanwhile, the fiber-shaped PDA-VGCF filler significantly reduced microcrack propagation during cycling and promoted the electronic conductance of the NCM811-based electrode. Generally, enlightened with the current experimental findings, the concerted ion and electron conductive agents significantly enhanced the Ni-rich cathode-based cell performance, which is a promising strategy to apply to other Ni-rich cathode materials for lithium-ion batteries.

4.
J Colloid Interface Sci ; 661: 1070-1081, 2024 May.
Article in English | MEDLINE | ID: mdl-38368230

ABSTRACT

The growing use of EVs and society's energy needs require safe, affordable, durable, and eco-friendly high-energy lithium-ion batteries (LIBs). To this end, we synthesized and investigated the removal of Co from Al-doped Ni-rich cathode materials, specifically LiNi0.9Co0.1Al0.0O2 (NCA-0), LiNi0.9Mn0.1Al0.0O2 (NMA-0), LiNi0.9Mn0.07Al0.03O2 (NMA-3), intending to enhance LIB performance and reduce the reliance on cobalt, a costly and scarce resource. Our study primarily focuses on how the removal of Co affects the material characteristics of Ni-rich cathode material and further introduces aluminum into the cathode composition to study its impacts on electrochemical properties and overall performance. Among the synthesized samples, we discovered that the NMA-3 sample, modified with 3 mol% of Al, exhibited superior battery performance, demonstrating the effectiveness of aluminum in promoting cathode stability. Furthermore, the Al-modified cathode showed promising cycle life under normal and high-temperature conditions. Our NMA-3 demonstrated remarkable capacity retention of âˆ¼ 88 % at 25 °C and âˆ¼ 81 % at 45 °C after 200 cycles at 1C, within a voltage range of 2.8-4.3 V, closely matching the performances of conventional NCM and NCA cathodes. Without cobalt, the cathodes exhibited increased cation disorder leading to inferior rate capabilities at high C-rates. In-situ transmission XRD analysis revealed that the introduction of Al has reduced the phase change and provided much-needed stability to the overall structure of the Co-free NMA-3. Altogether, the findings suggest that our aluminum-modified NMA-3 sample offers a promising approach to developing Co-free, Ni-rich cathodes, effectively paving the way toward sustainable, high-energy-density LIBs.

5.
ACS Appl Mater Interfaces ; 16(8): 10832-10844, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38359779

ABSTRACT

Due to its good mechanical properties and high ionic conductivity, the sulfide-type solid electrolyte (SE) can potentially realize all-solid-state batteries (ASSBs). Nevertheless, challenges, including limited electrochemical stability, insufficient solid-solid contact with the electrode, and reactivity with lithium, must be addressed. These challenges contribute to dendrite growth and electrolyte reduction. Herein, a straightforward and solvent-free method was devised to generate a robust artificial interphase between lithium metal and a SE. It is achieved through the incorporation of a composite electrolyte composed of Li6PS5Cl (LPSC), polyethylene glycol (PEG), and lithium bis(fluorosulfonyl)imide (LiFSI), resulting in the in situ creation of a LiF-rich interfacial layer. This interphase effectively mitigates electrolyte reduction and promotes lithium-ion diffusion. Interestingly, including PEG as an additive increases mechanical strength by enhancing adhesion between sulfide particles and improves the physical contact between the LPSC SE and the lithium anode by enhancing the ductility of the LPSC SE. Moreover, it acts as a protective barrier, preventing direct contact between the SE and the Li anode, thereby inhibiting electrolyte decomposition and reducing the electronic conductivity of the composite SE, thus mitigating the dendrite growth. The Li|Li symmetric cells demonstrated remarkable cycling stability, maintaining consistent performance for over 3000 h at a current density of 0.1 mA cm-2, and the critical current density of the composite solid electrolyte (CSE) reaches 4.75 mA cm-2. Moreover, the all-solid-state lithium metal battery (ASSLMB) cell with the CSEs exhibits remarkable cycling stability and rate performance. This study highlights the synergistic combination of the in-situ-generated artificial SE interphase layer and CSEs, enabling high-performance ASSLMBs.

6.
J Colloid Interface Sci ; 661: 289-306, 2024 May.
Article in English | MEDLINE | ID: mdl-38301467

ABSTRACT

A novel scalable Taylor-Couette reactor (TCR) synthesis method was employed to prepare Ta-modified LiNi0.92Co0.04Mn0.04O2 (T-NCM92) with different Ta contents. Through experiments and density functional theory (DFT) calculations, the phase and microstructure of Ta-modified NCM92 were analyzed, showing that Ta provides a bifunctional (doping and coating at one time) effect on LiNi0.92Co0.04Mn0.04O2 cathode material through a one-step synthesis process via a controlling suitable amount of Ta and Li-salt. Ta doping allows the tailoring of the microstructure, orientation, and morphology of the primary NCM92 particles, resulting in a needle-like shape with fine structures that considerably enhance Li+ ion diffusion and electrochemical charge/discharge stability. The Ta-based surface-coating layer effectively prevented microcrack formation and inhibited electrolyte decomposition and surface-side reactions during cycling, thereby significantly improving the electrochemical performance and long-term cycling stability of NCM92 cathodes. Our as-prepared NCM92 modified with 0.2 mol% Ta (i.e., T2-NCM92) exhibits outstanding cyclability, retaining 84.5 % capacity at 4.3 V, 78.3 % at 4.5 V, and 67.6 % at 45 â„ƒ after 200 cycles at 1C. Even under high-rate conditions (10C), T2-NCM92 demonstrated a remarkable capacity retention of 66.9 % after 100 cycles, with an initial discharge capacity of 157.6 mAh g-1. Thus, the Ta modification of Ni-rich NCM92 materials is a promising option for optimizing NCM cathode materials and enabling their use in real-world electric vehicle (EV) applications.

7.
Acta Ophthalmol ; 102(2): e156-e167, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37712302

ABSTRACT

To perform a meta-analysis to compare the efficacy and safety of diode laser transscleral cyclophotocoagulation (TSCPC) and cyclocryotherapy (CCT) in the treatment of intractable glaucoma. Systemic searches of the Ovid MEDLINE, EMBASE, and Cochrane Library databases yielded experimental and observational comparative studies. TSCPC and CCT efficacy and safety outcomes were compared. Subgroup analyses of participant ethnicity, preoperative intraocular pressure (IOP) level, and underlying causes of glaucoma were conducted. The pooled effects were computed using the random-effects model. The meta-analysis included nine studies totalling 668 eyes. There was no statistically significant difference between the TSCPC and CCT groups in the IOP reduction (IOPR%), decrease in antiglaucoma medications, the operative success rate with or without medications, or retreatment rate in the efficacy analysis. In the subgroup analysis, CCT had a better IOP-lowering effect among non-Asian participants and a non-inferior IOPR% to TSCPC among Asian participants. TSCPC and CCT were associated with similar rates of deterioration in visual acuity, postoperative visual analog scale, and other analysed postoperative complications in the safety analysis. In both groups, severe complications were uncommon. Diode laser TSCPC and CCT had nearly equivalent clinical efficacy in treating intractable glaucoma, while CCT demonstrated a better IOP-lowering effect in non-Asian. Both cyclodestructive procedures have a comparable safety profile.


Subject(s)
Glaucoma , Laser Coagulation , Humans , Laser Coagulation/methods , Glaucoma/surgery , Intraocular Pressure , Tonometry, Ocular , Ciliary Body/surgery , Treatment Outcome , Sclera/surgery , Retrospective Studies
8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1009346

ABSTRACT

OBJECTIVE@#To evaluate the feasibility of non-invasive prenatal testing (NIPT) for the screening of fetal chromosome aneuploidies in twin pregnancies.@*METHODS@#A total of 2 745 women with twin-pregnancies were subjected for NIPT screening. Chromosomal karyotyping and chromosomal microarray analysis (CMA) were carried out on amniotic fluid samples from those with a high risk for fetal chromosome aneuploidies, and the diagnosis and pregnancy outcome were followed up. The sensitivity, specificity, positive predictive value and false positive rate of the NIPT were calculated.@*RESULTS@#Compared with other chromosomal abnormalities, NIPT had a higher efficacy for trisomy 21 and sex chromosomal aneuploidy (SCA) in twin pregnancies (with sensitivity being 100%, 100%, and specificity being 99.93%, 99.9%, respectively). It is difficult to evaluate the efficacy for trisomies 18 and 13 due to the limited data. For chromosome microdeletions and microduplications spanning 15 ~ 21 Mb, NIPT also had a certain detection rate. Compared with women with natural conception, NIPT had a higher detection rate for those with twin pregnancies by assisted reproduction (P < 0.05).@*CONCLUSION@#It is feasible to use NIPT for the detection of chromosome aneuploidies in women with twin pregnancies.


Subject(s)
Pregnancy , Female , Humans , Pregnancy, Twin , Prenatal Diagnosis , Down Syndrome/genetics , Chromosome Aberrations , Aneuploidy , Trisomy 18 Syndrome/genetics , Trisomy
9.
J Colloid Interface Sci ; 658: 699-713, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38141392

ABSTRACT

Due to the poor thermal stability of conventional separators, lithium-ion batteries require a suitable separator to maintain system safety for long-term cycling performance. It must have high porosity, superior electrolyte uptake ability, and good ion-conducting properties even at high temperatures. In this work, we demonstrate a novel composite membrane based on sandwiching of zeolitic imidazole frameworks-67 decorated cellulose acetate nanofibers (ZIF-67@CA) with electrospun poly(vinyl alcohol)/melamine (denoted as PVAM) nonwoven membranes. The as-prepared sandwich-type membranes are called PVAM/x%ZIF-67@CA/PVAM. The middle layer of composite membranes is primarily filled with different weight percentages of ZIF-67 nanoparticles (x = 5, 15, and 25 wt%), which both reduces the non-uniform porous structure of CA and increases its thermal stability. Therefore, our sandwich-type PVAM/x%ZIF-67@CA/PVAM membrane exhibits a higher thermal shrinkage effect at 200 °C than the commercial polyethylene (PE) separator. Due to its high electrolyte uptake (646.8%) and porosity (85.2%), PVAM/15%ZIF-67@CA/PVAM membrane achieved high ionic conductivity of 1.46 × 10-3 S cm-1 at 70 °C, as compared to the commercial PE separator (ca. 6.01 × 10-4 S cm-1 at 70 °C). Besides, the cell with PVAM/15%ZIF-67@CA/PVAM membrane shows an excellent discharge capacity of about 167.5 mAh g-1after 100 cycles at a 1C rate with a capacity retention of 90.3%. The ZIF-67 fillers in our sandwich-type composite membrane strongly attract anions (PF6-) through Lewis' acid-base interaction, allowing uniform Li+ ion transport and suppressing Li dendrites. As a result, we found that the PVAM/15%ZIF-67@CA/PVAM composite nonwoven membrane is applicable to high-power, high-safety lithium-ion battery systems that can be used in electric vehicles (EVs).

10.
Acta Anatomica Sinica ; (6): 17-24, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1015146

ABSTRACT

Objective The volume and cortical thickness of gray matter in patients with multiple sclerosis (MS) and neuromyelitis optica (NMO) were compared and analyzed by voxel⁃based morphometry (VBM) and surface⁃based morphometry (SBM), and the differences in the structural changes of gray matter in the two diseases were discussed. Methods A total of 21 MS patients, 16 NMO patients and 19 healthy controls were scanned by routine MRI sequence. The data were processed and analyzed by VBM and SBM method based on the statistical parameter tool SPM12 of Matlab2014a platform and the small tool CAT12 under SPM12. Results Compared with the normal control group (NC), after Gaussian random field (GRF) correction, the gray matter volume in MS group was significantly reduced in left superior occipital, left cuneus, left calcarine, left precuneus, left postcentral, left central paracentral lobule, right cuneus, left middle frontal, left superior frontal and left superior medial frontal (P<0. 05). After family wise error (FWE) correction, the thickness of left paracentral, left superiorfrontal and left precuneus cortex in MS group was significantly reduced (P<0. 05). Compared with the NC group, after GRF correction, the gray matter volume in the left postcentral, left precentral, left inferior parietal, right precentral and right middle frontal in NMO group was significantly increased (P<0. 05). In NMO group, the volume of gray matter in left middle occipital, left superior occipital, left inferior temporal, right middle occipital, left superior frontal orbital, right middle cingulum, left anterior cingulum, right angular and left precuneus were significantly decreased (P<0. 05). Brain regions showed no significant differences in cortical thickness between NMO groups after FWE correction. Compared with the NMO group, after GRF correction, the gray matter volume in the right fusiform and right middle frontal in MS group was increased significantly(P<0. 05). In MS group, the gray matter volume of left thalamus, left pallidum, left precentral, left middle frontal, left middle temporal, right pallidum, left inferior parietal and right superior parietal were significantly decreased (P<0. 05). After FWE correction, the thickness of left inferiorparietal, left superiorparietal, left supramarginal, left paracentral, left superiorfrontal and left precuneus cortex in MS group decreased significantly (P<0. 05). Conclusion The atrophy of brain gray matter structure in MS patients mainly involves the left parietal region, while NMO patients are not sensitive to the change of brain gray matter structure. The significant difference in brain gray matter volume between MS patients and NMO patients is mainly located in the deep cerebral nucleus mass.

12.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5250-5258, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114114

ABSTRACT

To explore the effect and mechanism of Zuogui Pills in promoting neural tissue recovery and functional recovery in mice with ischemic stroke. Male C57BL/6J mice were randomly divided into a sham group, a model group, and low-, medium, and high-dose Zuogui Pills groups(3.5, 7, and 14 g·kg~(-1)), with 15 mice in each group. The ischemic stroke model was established using photochemical embolization. Stiker remove and irregular ladder walking behavioral tests were conducted before modeling and on days 7, 14, 21, and 28 after medication. Triphenyl tetrazolium chloride(TTC) staining was performed on day 3 after modeling, and T2-weighted imaging(T2WI) and diffusion-weighted imaging(DWI) were performed on day 28 after medication to evaluate the extent of brain injury. Hematoxylin-eosin(HE) staining was performed to observe the histology of the cerebral cortex. Axonal marker proteins myelin basic protein(MBP), growth-associated protein 43(GAP43), mammalian target of rapamycin(mTOR), and its downstream phosphorylated s6 ribosomal protein(p-S6), as well as mechanism-related proteins osteopontin(OPN) and insulin-like growth factor 1(IGF-1), were detected using immunofluorescence and Western blot. Zuogui Pills had a certain restorative effect on the neural function impairment caused by ischemic stroke in mice. TTC staining showed white infarct foci in the sensory-motor cortex area, and T2WI imaging revealed cystic necrosis in the sensory-motor cortex area. The Zuogui Pills groups showed less brain tissue damage, fewer scars, and more capillaries. The number of neuronal axons in those groups was higher than that in the model group, and neuronal activity was stronger. The expression of GAP43, OPN, IGF-1, and mTOR proteins in the Zuogui Pills groups was higher than that in the model group. In summary, Zuogui Pills can promote the recovery of neural function and axonal growth in mice with ischemic stroke, and its mechanism may be related to the activation of the OPN/IGF-1/mTOR signaling pathway.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Mice , Animals , Male , Recovery of Function/physiology , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/pharmacology , Mice, Inbred C57BL , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Stroke/drug therapy , Brain Ischemia/drug therapy , Mammals/metabolism
13.
J Environ Manage ; 348: 119288, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37864943

ABSTRACT

The metal resource crisis and the inherent need for a low-carbon circular economy have driven the rapid development of e-waste recycling technology. High-value waste printed circuit boards (WPCBs) are an essential component of e-waste. However, WPCBs are considered hazardous to the ecosystem due to the presence of heavy metals and brominated organic polymers. Therefore, achieving the recycling of metals in WPCBs is not only a strategic requirement for building a green ecological civilization but also an essential guarantee for achieving a safe supply of mineral resources. This review systematically analyzes the hydrometallurgical technology of metals in WPCBs in recent years. Firstly, the different unit operations of pretreatment in the hydrometallurgical process, which contain disassembly, crushing, and pre-enrichment, were analyzed. Secondly, environmentally friendly hydrometallurgical leaching systems and high-value product regeneration technologies used in recent years to recover metals from WPCBs were evaluated. The leaching techniques, including cyanidation, halide, thiourea, and thiosulfate for precious metals, and inorganic acid, organic acid, and other leaching methods for base metals such as copper and nickel in WPCBs, were outlined, and the leaching performance and greenness of each leaching system were summarized and analyzed. Eventually, based on the advantages of each leaching system and the differences in chemical properties of metals in WPCBs, an integrated and multi-gradient green process for the recovery of WPCBs was proposed, which provides a sustainable pathway for the recovery of metals in WPCBs. This paper provides a reference for realizing the gradient hydrometallurgical recovery of metals from WPCBs to promote the recycling metal resources.


Subject(s)
Electronic Waste , Metals, Heavy , Ecosystem , Electronic Waste/analysis , Copper/analysis , Nickel , Acids
14.
Waste Manag ; 172: 71-79, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37717464

ABSTRACT

Waste printed circuit boards (WPCBs) are an attractive secondary resource that is challenging to dispose of due to its complexity. Reverse flotation is an effective method to remove non-metallic particles (NMPs) to obtain metals from WPCBs. Nevertheless, the removal of NMPs is usually inadequate in the present flotation practice. Thus, to provide a clean approach to improve the removal efficiency of NMPs, the method of adding gutter oil during dry grinding process was adopted to enhance the hydrophobic sites on the surface of NMPs to improve the floatability. The surface morphology of NMPs was analyzed by SEM, the results show that the rough morphology inhibited the adhesion of bubbles, while water occupied the cracks and pores, making it challenging for collector adsorption, which result in unstable particle-bubble adhesion. The results of FTIR indicate that both NMPs and gutter oil have -CH3, -CH2, -C = O, -C-O functional groups, which promotes the adsorption of gutter oil on the surface of NMPs. The contact angle (CA) results show that the adsorption of gutter oil on the particle surface is conducive to the formation of enhanced CA. Furthermore, the flotation enhancement effect was verified by flotation kinetic experiments. The accumulated floats yield of NMPs conditioned by gutter oil during grinding is increased from 67.05% (NMPs without conditioning) to 95.02%, and the resin recovery is increased by 31.10%. It is demonstrated that dry grinding with gutter oil can strengthen the floatability of NMPs, which provides a potential approach to increase the flotation efficiency of WPCBs.


Subject(s)
Electronic Waste , Electronic Waste/analysis , Recycling/methods , Metals , Hydrophobic and Hydrophilic Interactions , Kinetics
15.
Antioxidants (Basel) ; 12(8)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37627501

ABSTRACT

This study evaluated the antioxidative and anti-inflammatory activities of polysaccharides extracted from unripe Carica papaya L. (papaya) fruit. Three papaya polysaccharide (PP) fractions, namely PP-1, PP-2, and PP-3, with molecular weights of 2252, 2448, and 3741 kDa, containing abundant xylose, galacturonic acid, and mannose constituents, respectively, were obtained using diethylaminoethyl-Sepharose™ anion exchange chromatography. The antioxidant capacity of the PPs, hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay revealed that the PP-3 fraction had the highest antioxidant activity, with an EC50 (the concentration for 50% of the maximal effect) of 0.96 mg/mL, EC50 of 0.10 mg/mL, and Abs700 nm of 1.581 for the hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay, respectively. In addition, PP-3 significantly decreased reactive oxygen species production by 45.3%, NF-κB activation by 32.0%, and tumor necrosis factor-alpha and interleukin-6 generation by 33.5% and 34.4%, respectively, in H2O2-induced human epidermal keratinocytes. PP-3 exerts potent antioxidative and anti-inflammatory effects; thus, it is a potential biofunctional ingredient in the cosmetic industry.

16.
J Clin Invest ; 133(20)2023 10 16.
Article in English | MEDLINE | ID: mdl-37607001

ABSTRACT

Human cancers induce a chaotic, dysfunctional vasculature that promotes tumor growth and blunts most current therapies; however, the mechanisms underlying the induction of a dysfunctional vasculature have been unclear. Here, we show that split end (SPEN), a transcription repressor, coordinates rRNA synthesis in endothelial cells (ECs) and is required for physiological and tumor angiogenesis. SPEN deficiency attenuated EC proliferation and blunted retinal angiogenesis, which was attributed to p53 activation. Furthermore, SPEN knockdown activated p53 by upregulating noncoding promoter RNA (pRNA), which represses rRNA transcription and triggers p53-mediated nucleolar stress. In human cancer biopsies, a low endothelial SPEN level correlated with extended overall survival. In mice, endothelial SPEN deficiency compromised rRNA expression and repressed tumor growth and metastasis by normalizing tumor vessels, and this was abrogated by p53 haploinsufficiency. rRNA gene transcription is driven by RNA polymerase I (RNPI). We found that CX-5461, an RNPI inhibitor, recapitulated the effect of Spen ablation on tumor vessel normalization and combining CX-5461 with cisplatin substantially improved the efficacy of treating tumors in mice. Together, these results demonstrate that SPEN is required for angiogenesis by repressing pRNA to enable rRNA gene transcription and ribosomal biogenesis and that RNPI represents a target for tumor vessel normalization therapy of cancer.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Mice , Animals , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Endothelial Cells/metabolism , Transcription, Genetic , RNA Polymerase I/genetics , Neoplasms/genetics , DNA-Binding Proteins/genetics , RNA-Binding Proteins/genetics
17.
Environ Int ; 177: 107988, 2023 07.
Article in English | MEDLINE | ID: mdl-37267729

ABSTRACT

A large quantity of metal compounds in plastics are released into the marine environment every year. However, our understanding of the extent and mechanism by which polymer-bound metals leach into seawater is still limited. In this study, a comprehensive survey was conducted to measure the metal concentrations in commonly used plastics and evaluate the effects of environmental factors (temperature, radiation, and salinity) and the physiochemical properties (surface roughness, specific surface area, hydrophobicity, and crystallinity) of the plastics on their metal leaching into seawater. In particular, we observed the metal loss from six plastics submerged in coastal seawater for eight months and studied the role of biofilm in controlling the leaching of Sb, Sn, Pb, Ba, and Cr. Our results indicate that increased temperature enhanced the release of these metals, while exposure to ultraviolet radiation significantly increased the leaching of Sn from polylactide (PLA). High salinity facilitated the leaching of Sn from PLA and Pb from polyvinylchloride ball, however inhibited the leaching of Ba from PE wrap. The leaching rate was primarily determined by the inherent property of crystallinity. Metal loss from the plastics in the field was apparent during the first three weeks, but then was hindered by the development of biofilm. Our study provides the mechanisms underlying metal leaching from physical, chemical, and biological perspectives, which is useful for understanding the environmental risk of the plastic-containing metals.


Subject(s)
Plastics , Water Pollutants, Chemical , Plastics/chemistry , Ultraviolet Rays , Lead , Polyesters , Biofilms , Water Pollutants, Chemical/analysis
18.
Int J Mol Sci ; 24(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37240130

ABSTRACT

Benefiting from the additional active sites for sodium-ion (Na+) adsorption and porous architecture for electrolyte accessibility, nitrogen-doped porous carbon has been considered the alternative anode material for Na+-storage applications. In this study, nitrogen-doped and zinc-confined microporous carbon (N,Z-MPC) powders are successfully prepared by thermally pyrolyzing the polyhedral ZIF-8 nanoparticles under an argon atmosphere. Following the electrochemical measurements, the N,Z-MPC not only delivers good reversible capacity (423 mAh/g at 0.02 A/g) and comparable rate capability (104 mAh/g at 1.0 A/g) but also achieves a remarkable cyclability (capacity retention: 96.6% after 3000 cycles at 1.0 A/g). Those can be attributed to its intrinsic characteristics: (a) 67% of the disordered structure, (b) 0.38 nm of interplanar distance, (c) a great proportion of sp2-type carbon, (d) abundant microporosity, (e) 16.1% of nitrogen doping, and (f) existence of sodiophilic Zn species, synergistically enhancing the electrochemical performances. Accordingly, the findings observed here support the N,Z-MPC to be a potential anode material enabling exceptional Na+-storage abilities.


Subject(s)
Carbon , Zinc , Ions , Nitrogen , Sodium
19.
Ideggyogy Sz ; 76(3-4): 95-101, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37009767

ABSTRACT

Background and purpose:

 To prevent ischemic strokes caused by carotid artery stenosis, carotid artery stenting (CAS) and carotid endarterectomy (CEA) have been utilized. However, complications could be linked to either or both procedures. The pur­pose of our study is to find the most efficient carotid ultrasound method to forecast peri­pro­cedural risk (embolization, new neu­ro­logical symptoms).  

. Methods:

We used Pubmed, EMBASE, and the Cochrane Library to conduct a sys­te­ma­tic literature search for the years 2000 to 2022.

. Results:

The grayscale medium (GSM) scale of plaque is the most promising criterion for evaluating periprocedural complications. According to the published observations (relatively small cohorts), peri-procedural problems would be significantly predicted by ≤ 20 of grayscale medium cut-off values. The diffusion-weighted MRI (DW-MRI) is the most sensitive method for assessing whether stenting or carotid endarterectomy resulted in peri-procedural ischemic lesions on diffusion-weighted MRI.  

. Conclusion:

A future, large-scale, multi-center study should confirm which grayscale medium  value is optimal to forecast periprocedural ischemic complications.

.


Subject(s)
Carotid Stenosis , Stroke , Humans , Carotid Stenosis/complications , Carotid Stenosis/diagnostic imaging , Carotid Stenosis/surgery , Diffusion Magnetic Resonance Imaging , Risk Factors , Stents/adverse effects , Stroke/etiology , Stroke/prevention & control , Stroke/diagnosis , Treatment Outcome , Ultrasonography, Carotid Arteries
20.
Front Pediatr ; 11: 1122513, 2023.
Article in English | MEDLINE | ID: mdl-37063667

ABSTRACT

Background: Helsmoortel-van der Aa syndrome, also known as ADNP syndrome, is a condition that causes developmental delay, language impairment, autism spectrum, and variable extraneurologic features. It is caused by heterozygous mutations in the ADNP gene on chromosome 20q13. Most of the genetic causes of Helsmoortel-van der Aa syndrome have been reported are as de novo nonsense or frameshift stop mutations in exon 5 of ADNP gene, while fewer truncating variants were discovered in exons 4 and the 5' end of exon 5. Methods: In our study, a 4-year-old female Chinese patient was reported with delayed psychomotor development, language impairment, ataxia, anxiety, aggressive behavior, and congenital heart defect. Trio whole exome sequencing and copy number variation sequencing were performed. Results: A novel de novo heterozygous pathogenic mutation c.568C > T (p.Gln190Ter) was identified in the ADNP gene of the proband. His unaffected parents did not have the variant. According to the American College of Medical Genetics (ACMG) guidelines, c.568C > T was classified as "pathogenic". Conclusion: Our report indicated that c.568C > T (p.Gln190Ter) in ADNP gene is the cause of abnormal development of the nervous system, congenital heart disease and strabismus, broadening the spectrum of ADNP gene mutations associated with Helsmoortel-van der Aa syndrome.

SELECTION OF CITATIONS
SEARCH DETAIL
...