Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 8167, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38071303

ABSTRACT

Translational control in pathogenic bacteria is fundamental to gene expression and affects virulence and other infection phenotypes. We used an enhanced ribosome profiling protocol coupled with parallel transcriptomics to capture accurately the global translatome of two evolutionarily distant pathogenic bacteria-the Gram-negative bacterium Salmonella and the Gram-positive bacterium Listeria. We find that the two bacteria use different mechanisms to translationally regulate protein synthesis. In Salmonella, in addition to the expected correlation between translational efficiency and cis-regulatory features such as Shine-Dalgarno (SD) strength and RNA secondary structure around the initiation codon, our data reveal an effect of the 2nd and 3rd codons, where the presence of tandem lysine codons (AAA-AAA) enhances translation in both Salmonella and E. coli. Strikingly, none of these features are seen in efficiently translated Listeria transcripts. Instead, approximately 20% of efficiently translated Listeria genes exhibit 70 S footprints seven nt upstream of the authentic start codon, suggesting that these genes may be subject to a novel translational initiation mechanism. Our results show that SD strength is not a direct hallmark of translational efficiency in all bacteria. Instead, Listeria has evolved additional mechanisms to control gene expression level that are distinct from those utilised by Salmonella and E. coli.


Subject(s)
Listeria , Protein Biosynthesis , Protein Biosynthesis/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , RNA, Messenger/metabolism , Listeria/genetics , Codon/metabolism , Codon, Initiator/metabolism , Bacteria/genetics , Peptide Chain Initiation, Translational/genetics
2.
Front Plant Sci ; 14: 1204600, 2023.
Article in English | MEDLINE | ID: mdl-37304710
3.
Front Plant Sci ; 13: 938570, 2022.
Article in English | MEDLINE | ID: mdl-36092413

ABSTRACT

RNA molecules have the capacity to form a multitude of distinct secondary and tertiary structures, but only the most energetically favorable conformations are adopted at any given time. Formation of such structures strongly depends on the environment and consequently, these structures are highly dynamic and may refold as their surroundings change. Temperature is one of the most direct physical parameters that influence RNA structure dynamics, and in turn, thermosensitive RNA structures can be harnessed by a cell to perceive and respond to its temperature environment. Indeed, many thermosensitive RNA structures with biological function have been identified in prokaryotic organisms, but for a long time such structures remained elusive in eukaryotes. Recent discoveries, however, reveal that thermosensitive RNA structures are also found in plants, where they affect RNA stability, pre-mRNA splicing and translation efficiency in a temperature-dependent manner. In this minireview, we provide a short overview of thermosensitive RNA structures in prokaryotes and eukaryotes, highlight recent advances made in identifying such structures in plants and discuss their similarities and differences to established prokaryotic RNA thermosensors.

4.
Nat Microbiol ; 7(1): 154-168, 2022 01.
Article in English | MEDLINE | ID: mdl-34949827

ABSTRACT

Infection of mammalian cells with viruses activates NF-κB to induce the expression of cytokines and chemokines and initiate an antiviral response. Here, we show that a vaccinia virus protein mimics the transactivation domain of the p65 subunit of NF-κB to inhibit selectively the expression of NF-κB-regulated genes. Using co-immunoprecipitation assays, we found that the vaccinia virus protein F14 associates with NF-κB co-activator CREB-binding protein (CBP) and disrupts the interaction between p65 and CBP. This abrogates CBP-mediated acetylation of p65, after which it reduces promoter recruitment of the transcriptional regulator BRD4 and diminishes stimulation of NF-κB-regulated genes CXCL10 and CCL2. Recruitment of BRD4 to the promoters of NFKBIA and CXCL8 remains unaffected by either F14 or JQ1 (a competitive inhibitor of BRD4 bromodomains), indicating that BRD4 recruitment is acetylation-independent. Unlike other viral proteins that are general antagonists of NF-κB, F14 is a selective inhibitor of NF-κB-dependent gene expression. An in vivo model of infection demonstrated that F14 promotes virulence. Molecular mimicry of NF-κB may be conserved because other orthopoxviruses, including variola, monkeypox and cowpox viruses, encode orthologues of F14.


Subject(s)
Host-Pathogen Interactions/genetics , Molecular Mimicry , NF-kappa B/genetics , Vaccinia virus/genetics , Viral Proteins/genetics , CREB-Binding Protein/metabolism , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , NF-kappa B/metabolism , Signal Transduction , Transcription, Genetic , Vaccinia/virology , Vaccinia virus/immunology , Vaccinia virus/pathogenicity , Viral Proteins/immunology , Viral Proteins/metabolism
5.
Bio Protoc ; 11(6): e3950, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33855112

ABSTRACT

RNA secondary structures are highly dynamic and subject to prompt changes in response to the environment. Temperature in particular has a strong impact on RNA structural conformation, and temperature-sensitive RNA hairpin structures have been exploited by multiple organisms to modify the rate of translation in response to temperature changes. Observing RNA structural changes in real-time over a range of temperatures is therefore highly desirable. A variety of approaches exists that probe RNA secondary structures, but many of these either require large amount and/or extensive processing of the RNA or cannot be applied under physiological conditions, rendering the observation of structural dynamics over a range of temperatures difficult. Here, we describe the use of a dually fluorescently labelled RNA oligonucleotide (containing the predicted hairpin structure) that can be used to monitor subtle RNA-structural dynamics by Förster Resonance Energy Transfer (FRET) at different temperatures with RNA concentration as low as 200 nM. FRET efficiency varies as a function of the fluorophores' distance; high efficiency can thus be correlated to a stable hairpin structure, whilst a reduction in FRET efficiency reflects a partial opening of the hairpin or a destabilisation of this structure. The same RNA sequence can also be used for Circular Dichroism spectroscopy to observe global changes of RNA secondary structure at a given temperature. The combination of these approaches allowed us to monitor RNA structural dynamics over a range of temperatures in real-time and correlate structural changes to plant biology phenotypes. Graphic abstract: Monitoring temperature-dependent RNA structural dynamics using Förster Resonance Energy Transfer (FRET).

6.
Mol Microbiol ; 116(2): 538-549, 2021 08.
Article in English | MEDLINE | ID: mdl-33893668

ABSTRACT

Bacterial flagellar subunits are exported across the cell membrane by the flagellar Type III Secretion System (fT3SS), powered by the proton motive force (pmf) and a specialized ATPase that enables the flagellar export gate to utilize the pmf electric potential (ΔΨ). Export gate activation is mediated by the ATPase stalk, FliJ, but how this process is regulated to prevent wasteful dissipation of pmf in the absence of subunit cargo is not known. Here, we show that FliJ activation of the export gate is regulated by flagellar export chaperones. FliJ binds unladen chaperones and, by using novel chaperone variants specifically defective for FliJ binding, we show that disruption of this interaction attenuates motility and cognate subunit export. We demonstrate in vitro that chaperones and the FlhA export gate component compete for binding to FliJ, and show in vivo that unladen chaperones, which would be present in the cell when subunit levels are low, sequester FliJ to prevent activation of the export gate and attenuate subunit export. Our data indicate a mechanism whereby chaperones couple availability of subunit cargo to pmf-driven export by the fT3SS.


Subject(s)
Adenosine Triphosphatases/metabolism , Bacterial Proteins/metabolism , Flagella/metabolism , Protein Transport/physiology , Salmonella typhimurium/metabolism , Type III Secretion Systems/metabolism , Bacterial Proteins/genetics , Cell Membrane/metabolism , Enzyme Activation , Membrane Proteins/metabolism , Molecular Chaperones/metabolism , Proton-Motive Force
7.
Nat Plants ; 6(5): 522-532, 2020 05.
Article in English | MEDLINE | ID: mdl-32284544

ABSTRACT

Temperature is a major environmental cue affecting plant growth and development. Plants often experience higher temperatures in the context of a 24 h day-night cycle, with temperatures peaking in the middle of the day. Here, we find that the transcript encoding the bHLH transcription factor PIF7 undergoes a direct increase in translation in response to warmer temperature. Diurnal expression of PIF7 transcript gates this response, allowing PIF7 protein to quickly accumulate in response to warm daytime temperature. Enhanced PIF7 protein levels directly activate the thermomorphogenesis pathway by inducing the transcription of key genes such as the auxin biosynthetic gene YUCCA8, and are necessary for thermomorphogenesis to occur under warm cycling daytime temperatures. The temperature-dependent translational enhancement of PIF7 messenger RNA is mediated by the formation of an RNA hairpin within its 5' untranslated region, which adopts an alternative conformation at higher temperature, leading to increased protein synthesis. We identified similar hairpin sequences that control translation in additional transcripts including WRKY22 and the key heat shock regulator HSFA2, suggesting that this is a conserved mechanism enabling plants to respond and adapt rapidly to high temperatures.


Subject(s)
Arabidopsis/growth & development , RNA, Plant/physiology , Arabidopsis/physiology , Arabidopsis Proteins/physiology , Circadian Rhythm , DNA-Binding Proteins/physiology , Gene Expression Regulation, Plant , Temperature , Transcription Factors/physiology
8.
Sci Rep ; 9(1): 11091, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31366981

ABSTRACT

The unicellular green alga Chlamydomonas reinhardtii is evolutionarily divergent from higher plants, but has a fully functional silencing machinery including microRNA (miRNA)-mediated translation repression and mRNA turnover. However, distinct from the metazoan machinery, repression of gene expression is primarily associated with target sites within coding sequences instead of 3'UTRs. This feature indicates that the miRNA-Argonaute (AGO) machinery is ancient and the primary function is for post transcriptional gene repression and intermediate between the mechanisms in the rest of the plant and animal kingdoms. Here, we characterize AGO2 and 3 in Chlamydomonas, and show that cytoplasmically enriched Cr-AGO3 is responsible for endogenous miRNA-mediated gene repression. Under steady state, mid-log phase conditions, Cr-AGO3 binds predominantly miR-C89, which we previously identified as the predominant miRNA with effects on both translation repression and mRNA turnover. In contrast, the paralogue Cr-AGO2 is nuclear enriched and exclusively binds to 21-nt siRNAs. Further analysis of the highly similar Cr-AGO2 and Cr-AGO 3 sequences (90% amino acid identity) revealed a glycine-arginine rich N-terminal extension of ~100 amino acids that, given previous work on unicellular protists, may associate AGO with the translation machinery. Phylogenetic analysis revealed that this glycine-arginine rich N-terminal extension is present outside the animal kingdom and is highly conserved, consistent with our previous proposal that miRNA-mediated CDS-targeting operates in this green alga.


Subject(s)
Argonaute Proteins/genetics , Chlamydomonas reinhardtii/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression/genetics , MicroRNAs/genetics , 3' Untranslated Regions/genetics , Biological Evolution , Phylogeny , RNA Interference/physiology , RNA, Messenger/genetics , RNA, Small Interfering/genetics
9.
Nat Plants ; 3(10): 787-794, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28970560

ABSTRACT

MicroRNAs (miRNAs) are 21-24-nucleotide RNAs present in many eukaryotes that regulate gene expression as part of the RNA-induced silencing complex. The sequence identity of the miRNA provides the specificity to guide the silencing effector Argonaute (AGO) protein to target mRNAs via a base-pairing process 1 . The AGO complex promotes translation repression and/or accelerated decay of this target mRNA 2 . There is overwhelming evidence both in vivo and in vitro that translation repression plays a major role 3-7 . However, there has been controversy about which of these three mechanisms is more significant in vivo, especially when effects of miRNA on endogenous genes cannot be faithfully represented by reporter systems in which, at least in metazoans, the observed repression vastly exceeds that typically observed for endogenous mRNAs 8,9 . Here, we provide a comprehensive global analysis of the evolutionarily distant unicellular green alga Chlamydomonas reinhardtii to quantify the effects of miRNA on protein synthesis and RNA abundance. We show that, similar to metazoan steady-state systems, endogenous miRNAs in Chlamydomonas can regulate gene expression both by destabilization of the mRNA and by translational repression. However, unlike metazoan miRNA where target site utilization localizes mainly to 3' UTRs, in Chlamydomonas utilized target sites lie predominantly within coding regions. These results demonstrate the evolutionarily conserved mode of action for miRNAs, but details of the mechanism diverge between the plant and metazoan kingdoms.


Subject(s)
Chlamydomonas/genetics , Gene Expression Regulation, Plant , MicroRNAs/physiology , RNA, Plant/physiology , 3' Untranslated Regions , Gene Silencing , Open Reading Frames/genetics
10.
Genome Res ; 26(4): 519-29, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26968199

ABSTRACT

We describe here a forward genetic screen to investigate the biogenesis, mode of action, and biological function of miRNA-mediated RNA silencing in the model algal species,Chlamydomonas reinhardtii Among the mutants from this screen, there were three at Dicer-like 3 that failed to produce both miRNAs and siRNAs and others affecting diverse post-biogenesis stages of miRNA-mediated silencing. The DCL3-dependent siRNAs fell into several classes including transposon- and repeat-derived siRNAs as in higher plants. The DCL3-dependent miRNAs differ from those of higher plants, however, in that many of them are derived from mRNAs or from the introns of pre-mRNAs. Transcriptome analysis of the wild-type and dcl3 mutant strains revealed a further difference from higher plants in that the sRNAs are rarely negative switches of mRNA accumulation. The few transcripts that were more abundant in dcl3 mutant strains than in wild-type cells were not due to sRNA-targeted RNA degradation but to direct DCL3 cleavage of miRNA and siRNA precursor structures embedded in the untranslated (and translated) regions of the mRNAs. Our analysis reveals that the miRNA-mediated RNA silencing in C. reinhardtii differs from that of higher plants and informs about the evolution and function of this pathway in eukaryotes.


Subject(s)
Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Gene Expression Regulation, Plant , Introns , MicroRNAs/genetics , RNA Interference , Ribonuclease III/metabolism , Untranslated Regions , Chromosome Mapping , Mutation , Ribonuclease III/genetics
11.
PLoS Pathog ; 12(2): e1005473, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26919232

ABSTRACT

Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal frameshift site. To our knowledge this is the first application of ribosome profiling to an RNA virus.


Subject(s)
Gene Expression Regulation, Viral , Murine hepatitis virus/metabolism , RNA, Messenger/metabolism , RNA, Viral/metabolism , Ribosomes/metabolism , Viral Proteins/metabolism , Animals , Cell Line , Frameshifting, Ribosomal , Gene Expression Profiling , Kinetics , Mesocricetus , Mice , Murine hepatitis virus/enzymology , Open Reading Frames , Protein Biosynthesis , RNA, Messenger/chemistry , RNA, Viral/chemistry , Restriction Mapping/methods , Sequence Analysis, RNA , Transcription, Genetic , Transcriptome , Viral Proteins/chemistry , Viral Proteins/genetics , Virus Physiological Phenomena
12.
RNA ; 21(10): 1731-45, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26286745

ABSTRACT

Ribosome profiling is a technique that permits genome-wide, quantitative analysis of translation and has found broad application in recent years. Here we describe a modified profiling protocol and software package designed to benefit more broadly the translation community in terms of simplicity and utility. The protocol, applicable to diverse organisms, including organelles, is based largely on previously published profiling methodologies, but uses duplex-specific nuclease (DSN) as a convenient, species-independent way to reduce rRNA contamination. We show that DSN-based depletion compares favorably with other commonly used rRNA depletion strategies and introduces little bias. The profiling protocol typically produces high levels of triplet periodicity, facilitating the detection of coding sequences, including upstream, downstream, and overlapping open reading frames (ORFs) and an alternative ribosome conformation evident during termination of protein synthesis. In addition, we provide a software package that presents a set of methods for parsing ribosomal profiling data from multiple samples, aligning reads to coding sequences, inferring alternative ORFs, and plotting average and transcript-specific aspects of the data. Methods are also provided for extracting the data in a form suitable for differential analysis of translation and translational efficiency.


Subject(s)
Endonucleases/metabolism , Ribosomes/metabolism , Software , Chlamydomonas reinhardtii/genetics , Computational Biology , Open Reading Frames
13.
EMBO Rep ; 16(8): 995-1004, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26113364

ABSTRACT

The family Potyviridae encompasses ~30% of plant viruses and is responsible for significant economic losses worldwide. Recently, a small overlapping coding sequence, termed pipo, was found to be conserved in the genomes of all potyvirids. PIPO is expressed as part of a frameshift protein, P3N-PIPO, which is essential for virus cell-to-cell movement. However, the frameshift expression mechanism has hitherto remained unknown. Here, we demonstrate that transcriptional slippage, specific to the viral RNA polymerase, results in a population of transcripts with an additional "A" inserted within a highly conserved GAAAAAA sequence, thus enabling expression of P3N-PIPO. The slippage efficiency is ~2% in Turnip mosaic virus and slippage is inhibited by mutations in the GAAAAAA sequence. While utilization of transcriptional slippage is well known in negative-sense RNA viruses such as Ebola, mumps and measles, to our knowledge this is the first report of its widespread utilization for gene expression in positive-sense RNA viruses.


Subject(s)
DNA-Directed RNA Polymerases/genetics , Genome, Viral , Nicotiana/virology , Potyvirus/genetics , RNA, Viral/genetics , Transcription, Genetic , Frameshifting, Ribosomal , Gene Expression Regulation, Viral , High-Throughput Nucleotide Sequencing , Open Reading Frames , Plant Leaves/virology , Viral Proteins/genetics
14.
PLoS Pathog ; 11(5): e1004868, 2015 May.
Article in English | MEDLINE | ID: mdl-25946037

ABSTRACT

Viruses in the family Luteoviridae have positive-sense RNA genomes of around 5.2 to 6.3 kb, and they are limited to the phloem in infected plants. The Luteovirus and Polerovirus genera include all but one virus in the Luteoviridae. They share a common gene block, which encodes the coat protein (ORF3), a movement protein (ORF4), and a carboxy-terminal extension to the coat protein (ORF5). These three proteins all have been reported to participate in the phloem-specific movement of the virus in plants. All three are translated from one subgenomic RNA, sgRNA1. Here, we report the discovery of a novel short ORF, termed ORF3a, encoded near the 5' end of sgRNA1. Initially, this ORF was predicted by statistical analysis of sequence variation in large sets of aligned viral sequences. ORF3a is positioned upstream of ORF3 and its translation initiates at a non-AUG codon. Functional analysis of the ORF3a protein, P3a, was conducted with Turnip yellows virus (TuYV), a polerovirus, for which translation of ORF3a begins at an ACG codon. ORF3a was translated from a transcript corresponding to sgRNA1 in vitro, and immunodetection assays confirmed expression of P3a in infected protoplasts and in agroinoculated plants. Mutations that prevent expression of P3a, or which overexpress P3a, did not affect TuYV replication in protoplasts or inoculated Arabidopsis thaliana leaves, but prevented virus systemic infection (long-distance movement) in plants. Expression of P3a from a separate viral or plasmid vector complemented movement of a TuYV mutant lacking ORF3a. Subcellular localization studies with fluorescent protein fusions revealed that P3a is targeted to the Golgi apparatus and plasmodesmata, supporting an essential role for P3a in viral movement.


Subject(s)
Brassica napus/virology , Luteoviridae/genetics , Luteovirus/genetics , Open Reading Frames , Plant Diseases/virology , Genome, Viral/immunology , RNA, Viral/genetics , Sequence Alignment
15.
J Virol ; 88(1): 10-20, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24155369

ABSTRACT

The genome sequences of new viruses often contain many "orphan" or "taxon-specific" proteins apparently lacking homologs. However, because viral proteins evolve very fast, commonly used sequence similarity detection methods such as BLAST may overlook homologs. We analyzed a data set of proteins from RNA viruses characterized as "genus specific" by BLAST. More powerful methods developed recently, such as HHblits or HHpred (available through web-based, user-friendly interfaces), could detect distant homologs of a quarter of these proteins, suggesting that these methods should be used to annotate viral genomes. In-depth manual analyses of a subset of the remaining sequences, guided by contextual information such as taxonomy, gene order, or domain cooccurrence, identified distant homologs of another third. Thus, a combination of powerful automated methods and manual analyses can uncover distant homologs of many proteins thought to be orphans. We expect these methodological results to be also applicable to cellular organisms, since they generally evolve much more slowly than RNA viruses. As an application, we reanalyzed the genome of a bee pathogen, Chronic bee paralysis virus (CBPV). We could identify homologs of most of its proteins thought to be orphans; in each case, identifying homologs provided functional clues. We discovered that CBPV encodes a domain homologous to the Alphavirus methyltransferase-guanylyltransferase; a putative membrane protein, SP24, with homologs in unrelated insect viruses and insect-transmitted plant viruses having different morphologies (cileviruses, higreviruses, blunerviruses, negeviruses); and a putative virion glycoprotein, ORF2, also found in negeviruses. SP24 and ORF2 are probably major structural components of the virions.


Subject(s)
Viral Proteins/genetics , Amino Acid Sequence , Molecular Sequence Data , Open Reading Frames , Sequence Homology, Amino Acid , Viral Proteins/chemistry
16.
PLoS One ; 8(11): e80720, 2013.
Article in English | MEDLINE | ID: mdl-24260463

ABSTRACT

We investigated whether small RNA (sRNA) sequenced from field-collected mosquitoes and chironomids (Diptera) can be used as a proxy signature of viral prevalence within a range of species and viral groups, using sRNAs sequenced from wild-caught specimens, to inform total RNA deep sequencing of samples of particular interest. Using this strategy, we sequenced from adult Anopheles maculipennis s.l. mosquitoes the apparently nearly complete genome of one previously undescribed virus related to chronic bee paralysis virus, and, from a pool of Ochlerotatus caspius and Oc. detritus mosquitoes, a nearly complete entomobirnavirus genome. We also reconstructed long sequences (1503-6557 nt) related to at least nine other viruses. Crucially, several of the sequences detected were reconstructed from host organisms highly divergent from those in which related viruses have been previously isolated or discovered. It is clear that viral transmission and maintenance cycles in nature are likely to be significantly more complex and taxonomically diverse than previously expected.


Subject(s)
Diptera/virology , Insect Viruses/classification , Insect Viruses/genetics , RNA, Viral , Animals , Base Sequence , Codon , Culicidae/virology , Entomobirnavirus/classification , Entomobirnavirus/genetics , Frameshift Mutation , Genome, Viral , Molecular Sequence Data , Phylogeny , Polymorphism, Genetic , Reading Frames , Reproducibility of Results , Sequence Alignment , Sequence Analysis, DNA , Untranslated Regions
17.
J Mol Biol ; 397(2): 448-56, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20114053

ABSTRACT

Programmed ribosomal frameshifting allows the synthesis of alternative, N-terminally coincident, C-terminally distinct proteins from the same RNA. Many viruses utilize frameshifting to optimize the coding potential of compact genomes, to circumvent the host cell's canonical rule of one functional protein per mRNA, or to express alternative proteins in a fixed ratio. Programmed frameshifting is also used in the decoding of a small number of cellular genes. Recently, specific ribosomal -1 frameshifting was discovered at a conserved U_UUU_UUA motif within the sequence encoding the alphavirus 6K protein. In this case, frameshifting results in the synthesis of an additional protein, termed TF (TransFrame). This new case of frameshifting is unusual in that the -1 frame ORF is very short and completely embedded within the sequence encoding the overlapping polyprotein. The present work shows that there is remarkable diversity in the 3' sequences that are functionally important for efficient frameshifting at the U_UUU_UUA motif. While many alphavirus species utilize a 3' RNA structure such as a hairpin or pseudoknot, some species (such as Semliki Forest virus) apparently lack any intra-mRNA stimulatory structure, yet just 20 nt 3'-adjacent to the shift site stimulates up to 10% frameshifting. The analysis, both experimental and bioinformatic, significantly expands the known repertoire of -1 frameshifting stimulators in mammalian and insect systems.


Subject(s)
Alphavirus/physiology , Frameshifting, Ribosomal , RNA, Viral/genetics , Alphavirus/genetics , Base Sequence , Molecular Sequence Data , Nucleic Acid Conformation
18.
Proc Natl Acad Sci U S A ; 105(15): 5897-902, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18408156

ABSTRACT

The family Potyviridae includes >30% of known plant virus species, many of which are of great agricultural significance. These viruses have a positive sense RNA genome that is approximately 10 kb long and contains a single long ORF. The ORF is translated into a large polyprotein, which is cleaved into approximately 10 mature proteins. We report the discovery of a short ORF embedded within the P3 cistron of the polyprotein but translated in the +2 reading-frame. The ORF, termed pipo, is conserved and has a strong bioinformatic coding signature throughout the large and diverse Potyviridae family. Mutations that knock out expression of the PIPO protein in Turnip mosaic potyvirus but leave the polyprotein amino acid sequence unaltered are lethal to the virus. Immunoblotting with antisera raised against two nonoverlapping 14-aa antigens, derived from the PIPO amino acid sequence, reveals the expression of an approximately 25-kDa PIPO fusion product in planta. This is consistent with expression of PIPO as a P3-PIPO fusion product via ribosomal frameshifting or transcriptional slippage at a highly conserved G(1-2)A(6-7) motif at the 5' end of pipo. This discovery suggests that other short overlapping genes may remain hidden even in well studied virus genomes (as well as cellular organisms) and demonstrates the utility of the software package MLOGD as a tool for identifying such genes.


Subject(s)
Genes, Essential , Genes, Overlapping , Plant Viruses/genetics , Potyviridae/genetics , Viral Fusion Proteins/genetics , Genes, Viral , Genome, Viral , Open Reading Frames , Polyproteins/genetics , RNA, Viral
19.
BMC Genomics ; 7: 120, 2006 May 19.
Article in English | MEDLINE | ID: mdl-16712733

ABSTRACT

BACKGROUND: The majority of introns in gene transcripts are found within the coding sequences (CDSs). A small but significant fraction of introns are also found to reside within the untranslated regions (5'UTRs and 3'UTRs) of expressed sequences. Alignment of the whole genome and expressed sequence tags (ESTs) of the model plant Arabidopsis thaliana has identified introns residing in both coding and non-coding regions of the genome. RESULTS: A bioinformatic analysis revealed some interesting observations: (1) the density of introns in 5'UTRs is similar to that in CDSs but much higher than that in 3'UTRs; (2) the 5'UTR introns are preferentially located close to the initiating ATG codon; (3) introns in the 5'UTRs are, on average, longer than introns in the CDSs and 3'UTRs; and (4) 5'UTR introns have a different nucleotide composition to that of CDS and 3'UTR introns. Furthermore, we show that the 5'UTR intron of the A. thaliana EF1alpha-A3 gene affects the gene expression and the size of the 5'UTR intron influences the level of gene expression. CONCLUSION: Introns within the 5'UTR show specific features that distinguish them from introns that reside within the coding sequence and the 3'UTR. In the EF1alpha-A3 gene, the presence of a long intron in the 5'UTR is sufficient to enhance gene expression in plants in a size dependent manner.


Subject(s)
5' Untranslated Regions/chemistry , Arabidopsis/genetics , Gene Expression Regulation, Plant , Introns , 3' Untranslated Regions , Arabidopsis/metabolism , Computational Biology , Gene Silencing , Genomics , Peptide Elongation Factor 1/genetics , Plants, Genetically Modified/metabolism , RNA Splice Sites , Repressor Proteins/metabolism , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...